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Abstract

The THEOS project is a high altitude balloon project that was sent to the edge of space on the
08/04/11 to obtain useful meteorological data for under £700. The project consited of a 1600g balloon,
a 4ft parachute and a stryofoam payload filled with an array of meterological equipment.

The payload reached a minimum altiutude of 36100m before bursting, in a flight time of ≈ 2hours
25minutes, with an average ascent rate of the around 5m/s and an average decent rate was 24.5m/s.
The payload landed at 52.849565N, 0.893740W, and data for pressure, temperature, humidity of the
atmosphere, as well as position and acceleration of the payload was recorded throughout the flight. The
payload took good quality images and some HD video footage of the flight showing, the curvature of the
Earth, as well as any turbulence in the atmopshere.

Simulations for the flight were created with a C++ programme with took into account a range of
factors. The simulation results were comparable to other simulation software and the flight data, however
the simulations accuracy could be improved upon.

All equations in this report have their parameters defined in the appendix. Any parameters that
require their meaning to be explained will be done accordingly.
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1 Introduction

High altitude balloon projects have been used for over a century. For a few hundred pounds, they are capa-
ble of reaching altitudes higher than any other method. They are invaluable projects for scientific research,
contributing to everything from weather predictions, to the discovery of Cosmic rays, which was one of the
most important discoveries for astronomy to date.

These days, high altitude ballooning has become a recreational activity, with balloons being launched every
day around the world. The high altitude ballooning community are returning more and more extravagant
achievements with time, as materials and technology become more accessible at lower costs.

For the To The Edge Of Space (THEOS) project, a high altitude balloon project, a vessel was designed and
built to travel to the edge of space, over 30 km into the atmosphere. The aim of the project was to obtain
meteorological data and compare it to current models of atmospheric parameter profiles of the atmosphere
with respect to altitude.

The project consists of a team of 4 undergraduates and a supervisor. With a budget of £700, the project
was designed to achieve the following criteria:

• A target payload altitude of over 30 kilometres

• Photos showing the curvature of the earth

• Temperature and pressure measurements as a function of altitude

• A means of tracking and recovering the payload safely

• Backup systems for tracking the payload.

Other goals for the project were set, including obtaining live data, humidity data, HD video and back-ups
for all electrical systems, however these aims were not a priority, and were included only if the funding and
time allowed.

The project was carried out in the style of a real world business proposal and was split into 2 sections. In
the first section, the project group was split into two teams of two members. Each team was tasked with
coming up with a vessel design and method to achieve the task brief. Both groups were given 3 months to
come up with a vessel design proposal, produce projections of the vessel’s flight and the results expected
from the meteorological equipment. After 3 months the two groups would then come together to discuss
which designs, construction plans and vessel components were the most suitable for the budget and task at
hand. Negotiation for discounts was forbidden at this stage in the project to avoid any confusion for retailers
being contacted by two groups working on the same project.

The second section of the project involved creating the vessel with the specifications finalised at the meeting.
The complete design, production and thorough testing of the vessel had to be achieved prior to the defined
launch window of the 28th of March to the 8th of April 2011.

Launch took take place at Surprise View, The Peak district on the 8th of April. The weather conditions
were perfect for the flight and meteorological data was obtained for all the elements of the task brief. The
payload was recovered safely a few kilometers from where it was predicted to land, resulting in the project’s
success.
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2 Preparation and research

2.1 Research into prior group attempts

To understand the main elements involved with high altitude based projects, research into prior groups
attempts was carried out prior to the project design. The main groups researched are outlined below:

2.1.1 UK High Altitude Society (UKHAS)[22]

This society provides a website that has a step by step guide for anybody wanting to send balloons to high
altitudes for both scientific and recreational purposes. It covers everything from the basic physics involved in
balloon flight, to technical details such as how to set up a GPS system from basic components. It also alerts
people to the legality and safety issues of high altitude balloon projects, all of which have to be considered
prior to launch.

2.1.2 Cambridge University Space Flight programme (CUSF)[10]

CUSF is a ten member team from the University of Cambridge which promotes high altitude balloon experi-
ments over a range of different academic disciplines. The team has produced a useful simulation programme
which can predict the path a high altitude balloon will take, based on the payload’s average ascent rate,
decent rate and GRIB wind data [8](wind data with respect to altitude in a gridded format). The website
also has an optimum altitude calculator, which predicts the duration time of a balloon flight and the altitude
a balloon will burst at.

2.1.3 ICARUS+HALO [17] [13]

The ICARUS and HALO projects follow a similar task brief to the one defined above. Both projects have
had a number of launches and provide detailed diaries of events for every launch. This gives an indication
to the factors that need to be considered when launching such a project.

2.2 Key factors to consider

From the research into high altitude projects, there were many topics raised including the method of filling
the balloon and how to retrieve the project data once launched. The following key topics were the ones
which needed immediate before the project could be taken any further:

2.2.1 Method of Lift

The majority of the high altitude projects researched, obtain lift by using sounding balloons filled with
Helium. These sounding balloons are made from a Latex compound and are used as weather balloons on a
day to day basis [3]. These sounding balloons are capable of reaching altitudes beyond the 30 km limit set
by the task brief[3], making it the cheapest and most reliable way to provide lift. The size of the balloon
and the amount of helium required depends on the weight of the main payload.

2.2.2 Tracking the payload and obtaining the data

There are two common ways of recovering data from a payload, the first of which is to transmit the data the
payload obtains live during flight. This way, if the payload is lost, the data will still be safe, resulting in the
project’s success. The second method of data recovery is to store the data on-board the payload and recover
the payload post-flight. This is a much less risky way to ensure all of the data is recovered, as long as the
payload is recovered in the first place, because live transmission of data relies on having a constant clear line
of sight to the payload throughout the flight [6]. This is a condition that is likely to be broken by a range of
factors including bad weather, payload descending below a tree-line or the horizon, or any other unexpected
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interference of the data signal. Because of this risk, the project used the on board data collection option in
order to obtain data.

Recovering the payload requires some form of GPS tracking system, where co-ordinates can be transmitted
to the user when the payload lands. This can be achieved in a variety of different ways. The most suitable
methods will be discussed further in section 4.4 of this report.

The two main risks of storing the data onboard the payload are that the payload may not be recoverable and
the instruments onboard may not be able to store data over the time of the flight in the harsh conditions of
the upper atmosphere. Both of these risks were evaluated to be acceptable when the available methods of
tracking, on-board data recording and recovery were researched and tested.

2.2.3 Insulation for the payload contents (Operation temperatures)

At high altitudes, the temperature of the atmosphere can drop below −50oC [1]. These low temperature
conditions affect the operation of most of the electrical equipment in these projects, especially in terms
of reducing the battery life. As such, insulation of the payload needs to be considered. The researched
projects claim that the internal temperature of their payload did not fall much below 273K [22], with a
payload housing made from Styrofoam. As such, to save money and weight, whilst maintaining insulation,
the material used for constructing the payload was Styrofoam.

2.2.4 Legality and safety.

The safety aspect of the project is a prime concern, as it potentially affects the general public and the
aviation industry. Both the legality and the safety conditions of the vessel’s flight must be fully evaluated
before any launch can be planned. This affects the decision on size and design of any balloon or parachute
system used.

As part of the legal requirements for the project, approval from the Civil Aviation Authority (CAA) [22]
had to be obtained for launch between the 28th of March, and the 8th of April 2011 from Surprise View,
the Peak District. This was to ensure there were no problems caused for air traffic, as the payload travelled
through the 8-9km altitude region for a short period of time during flight; the altitude which commercial
airliners fly at. The clearance requires notifying the relevant air traffic control regions and the local gliding
clubs, both 24 hours and 30 minutes before the payload’s flight to ensure the safety of everyone affected by
the launch.

To evaluate the risks of the project fully, the CAA and air traffic control required simulations of the vessels
path of flight with respect to time. These projections require a basic understanding of the physics behind
the flight.

3 Theory

3.1 Atmospheric parameters and flight variables

To simulate the flight of the vessel and produce projections of the expected flight and meteorological data,
the 4 main forces influencing the motion of the balloon must be well understood.

• Lift

• Drag

• Gravity
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• Cross-winds acting on the payload

Any change in the atmospheric properties with altitude will affect at least 3 of the above forces. As such, a
basic understanding of atmospheric parameters must be covered before any conclusions can be drawn about
the balloon’s flight.

3.1.1 Explanation of pressure and temperature behaviour of the atmosphere

For the purposes of this project, a simple empirical form for the temperature profile was used. The profile
can be explained in terms of qualitative physics, but any in depth quantitative explanation is beyond the
scope of this project.

Figure 1: A projection of the temperature pressure profiles of the atmosphere with respect to altitude

Figure (1) shows the temperature and pressure profiles of the Earth’s atmosphere [2]. An initial decrease in
atmospheric temperature occurs between ground level and 11km of altitude [1]. This is defined as the Tropo-
sphere, one of the many layers that the Earth’s atmosphere is comprised of. The decrease of the Troposphere’s
temperature with altitude is a consequence of the Tropospheric pressure gradient, described by equation (4)
and the equations (1) and (2) [2] in the next section. The temperature and pressure gradients across the Tro-
posphere provokes convective behavior in the atmosphere, making it turbulent [21]. This turbulence affects
the vessel’s flight path, so it was accounted for in the simulations in terms of the vessel’s horizontal trajectory.
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The Troposphere accounts for around 75% of the earths atmosphere, and extends to its boundary, the
Tropopause, at around 11km at British latitude [1] [2]. The Tropopause marks the start of a temperature
inversion in the atmosphere, which causes clouds to form. As such, the humidity of the Tropospheric layer
is considered to be relatively high throughout the layer, depending on the weather conditions up to the
Tropopause boundary.

The Tropopause extends from around 11-20 km above the Earths surface. Figure (1) shows the layer’s
isothermal nature, which comes from the equilibrium of the temperature between the Troposphere and the
Stratosphere, which is described below. This layer’s properties are very seasonal and position dependent,
but it always acts as an atmospheric ”lid” to the Troposphere, stoping any water vapour, and therefore
humidity, from entering the next atmospheric level [21].

At around 20km and above, the temperature of the atmosphere begins to increase again. This is the region
known as the Stratosphere. The source of the temperature increase is the absorption of UV radiation from
the sun by gases such as ozone[1]. Due to the low particle densities in the Stratosphere, the temperature
of the gas can increase dramatically, even for a limited amount of absorption. This layer extends to 50km
in altitude and accounts for 10% of the total amount of the atmosphere. Due to the Tropopause layer, the
Stratosphere is much dryer than the Troposphere [21].

The pressure profile varies much more smoothly than the temperature profile throughout the layers of the
atmosphere. The profile decreases almost like an exponential decay with altitude, due to the decrease in
gravity’s hold on the atmosphere with altitude. However, the relationship describing the profile varies, de-
pending if the layer of the atmosphere considered is isothermal or not. This is covered in mathematical detail
in the next section[2].

3.1.2 Mathematical descriptions of the temperature and pressure profiles of the atmosphere

Simulating the above descriptions of the temperature and pressure profiles requires a mathematical de-
scription of the Earth’s atmospheric properties. All parameters to all equations in this project report are
summarised in section A of the appendix, but will be covered again in the relevant areas if they are of
particular importance.

The pressure of the Earth’s atmosphere can be described in terms of two expressions. These expressions
depend on whether the layer of the atmosphere displays isothermal behavior or not [2] .

P (h) = Pbe
−gM

h−hb
RTb : Isothermal case (1)

P (h) = Pb

(
Tb

Tb + Lb(h− hb)

) gM
RLb

: Non-isothermal case (2)

The Pb, Tb, Lb and hb terms correspond to pressure, temperature, lapse rate and height at the base of the
atmospheric layer in question.

The lapse rate of the atmosphere is a term used to describe the temperature profile of the atmosphere [2]
. As such, every layer in the atmosphere can have its temperature profile described by the following simple
expression:

T = Tb + Lbh (3)

8



3.1.3 Volume of the balloon

The lift of the payload is dependent on the volume of helium used in the balloon (see equation (5). The
maximum volume the balloon is capable of defines the maximum altitude which the vessel can reach. Deter-
mining how the volume of the balloon depends on the temperature and pressure profiles of the atmosphere,
allows the maximum alitiude of the payload can to be predicted.

The volume of the balloon at any given point in the vessels flight can be described by the ideal gas law:

PV = nRT (4)

To simulate how the volume of the balloon changes with the vessel’s flight, the following assumptions have
to be made to link the atmosphere’s known properties to the conditions in which the balloon exists:

• The balloon ascends at a slow enough rate and the elasticity of the balloon is negligible
such that the pressure inside the balloon is always equal to the pressure outside the bal-
loon.
This assumption is a good approximation at ground level. When the balloon is filled, it will only be
filled to provide just enough force to launch the balloon. As such, there will be negligible restriction
on the balloon’s volume at ground level from the elastic contraction force from the balloon’s shell. At
high altitudes this elastic constriction may play a small role, but it will be considered to be negligible
for the purposes of this project.

Due to the small force accelerating the payload, the slow ascent rate will allow the balloon’s internal
pressure to equalise with the external pressure throughout the ascent. As a result this is a good as-
sumption to make about the pressure of the balloon.

• The temperature inside the balloon is in thermal equilibrium with the temperature out-
side the balloon.
Due to the slow ascent rate of the balloon, we assume that the gas inside the balloon has time to reach
thermal equilibrium with the surrounding temperature on the balloon’s ascent. This assumption is
not entirely accurate. However, on testing this assumption in simulations, by finding results when the
balloon’s internal temperature is constant, the effect of breaching the assumption is small. As such,
this assumption is used in all simulations on the project’s projections.

The basic parameters that effect the flight path of the balloon have now been covered enough to evaluate
the forces that act on the payload.

3.2 Basics of flight simulation

The 4 forces outlined in the previous section are the main forces that influence the path the vessel took
thoughout its flight. Simulating these forces requires a basic knowledge of the physics that drives them, over
the conditions which the vessel will encounter

3.2.1 Buoyancy force

The lift from the vessel’s balloon is described by a take on the Archimedes displacement principle [23]:

• A body less dense than the fluid in which it is immersed will experience an up-thrust
force equal to the mass of the fluid which the body has displaced.
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This means that the upward force the payload balloon exerts is equal to the following expression:

Fb = ρAirVHeliumg (5)

Equation 5 can be manipulated with two forms of the ideal gas law described below:

P =
kTAirρAir

ma
and equation 4 (6)

By substituting equation (6) and (4) into equation (5) you get a useful expression for the buoyancy force,
which is independent of the temperature and pressure around it. This remains true as long as assumptions
outline in section 3.1.3 hold true. The expression for the balloon’s lift used in all simulations is therefore:

Fb =
manRg

kb
(7)

and the number of moles of helium used to provide this buoyancy force can be expressed by:

n =
Fbkb
maRg

(8)

The amount of helium required to lift the payload needs to be known so the cost of helium can be taken into
account when designing the vessel.

3.2.2 Gravity

The basic Newtonian force of gravity is given by the following equation:

Fg =
GMm

r2
≈ mg (9)

To achieve lift, the buoyancy from the balloon must overcome this force. The greater the net upward force,
the greater the balloon’s average ascent rate will be.
It should be noted that the gravitational force acting on the payload and its components is proportional to
the square of the distance the payload is from the centre of the Earth. As the payload moves further into
the atmosphere, the weakened hold of gravity will cause a slow increase in the payload velocity on ascent.
This effect is supported with the reduction of pressure and drag with respect to altitude, as described by
equation(10).

3.2.3 Drag

The drag force is given by the following equation [4]:

FDrag =
PAirmaCdA

2kbTAir
v2 (10)

where Cd is the drag co-effeicient. This coefficient takes into account the amount of drag force a body exerts
due to its shape [4]. This is purely an experimental result, making it difficult to evaluate for this project.
The drag coefficient for the vessel is taken to be 0.25 on its ascent, and 0.75 on it’s descent [10]. The inverted
profile of the parachute makes the drag coefficient much more dominant than that of a spherical balloon.

From equation (10), many of the parameters depend on the altitude and conditions the vessel is in. The result
of this is that the drag force decreases with altitude, resulting in simulations showing an overall accellerating
vessel during its acsent (see figure (5)).
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3.2.4 Cross-wind forces

Cross-winds acting on the payload will not only define the path and landing location of the project, but will
also determine how smooth the payload ride is, which is essential for obtaining good image evidence for the
curvature of the Earth. Cross-winds are very dependent on altitude, due to the turbulent motions of the
Earths atmosphere, as outlined in section 3.1.1.
The force that acts on the payload and balloon due to cross-winds can be evaluated in a similar way to the
drag force with the following expression:

Fwind =
PAirmaCdA

2kbTAir
(vwind − v)2 (11)

Equation (11) and equation (10) are very simaliar. The main difference between the two is that the velocity
is a relative quantity in equation (11) with respect to the cross-winds. Simulating this force required access
to wind velocity data, obtained from a source outlined in section 4.1.2.

Now a general understanding of the physics involved with high altitude balloon flights has been covered,
simulations, design, construction and launch for the THEOS project can be undertaken.

4 Method

4.1 Simulations

Due to the inaccuracies and unreliability of using excel as a numerical simulation tool, a C++ programme
was written to project all the data required for the project. This was a key component for the analysis of
the project data. The criteria set for the simulation was as follows:

• To output pressure, temperature, payload velocity, balloon volume and wind velocities as a function
of flight time.

• To be able to simulate the path the payload takes both in terms of altitude and North-South, and
East-West directions.

• To take into account more physics than a stated ascent and descent rate for the payload’s trajectory.

• To be versatile enough that any user can insert their own data and parameters in to the programme.

• To be able to upload a user friendly version of the programme to the project website, so that anybody
wishing to complete a similar project can do so.

A brief overview of the programme algorithm and a copy of the final C++ programme source code is given
in section E and G in the appendix respectively.
The programme was written as 2 sections which work together to produce an overall result. The first section
outlines the general ascent and descent path of the vessel with time, whilst the second section uses wind
data to determine the horizontal path of the vessel.

4.1.1 Simulations of the general ascent and descent of the payload

The C++ programme simulates the motion of the vessel, by evaluating the force acting on the payload over
small increments in space. The programme makes the assumption that the accelerating force of the payload
is constant over these small increments. An increment step size of 0.1m was used in all the simulation
results in this report, however the programme allows the user to choose which ever step size they require.
The smaller the step size, the more accurate the simulation becomes, but the longer the run time is for the
simulation. The programme can simulate the trajectory of the payload during its flight and result return
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the projected meteorological data required for analysis.

The programme was designed so that the user has a choice of 3 options to run:

• The first choice is to run the programme for predefined parameters from the day of our project flight.
These parameters are stored in the source code of the programme, to make the project’s simulation
quicker when evaluating the results.

• The second choice is to run the algorithm used in choice 1 with data input by any user. Both the above
1st and 2nd choices use the standard temperature and pressure profiles described in section 3.1, how-
ever the second choice allows some of the key parameters to be chosen for the running of the programme.

• The third choice allows the programme to take pressure and temperature data from an official pre-
diction source such as NOAA (see section 4.1.2). This means that data for the day’s temperature,
pressure and wind as a function of altitude can be put into the simulation to return projections on the
payloads trajectory and meteorological data.

The programme was written so that every defined number of steps in altitude, data is recorded in a file for
analysis. This value is either preset at 100 for choice 1 or definable by the user for choice 2 and 3. This
feature saves running time for the programme. Whilst outputting a smaller number of data points to plot,
simulation accuracy is not compromised.

For the programme to return any simulation data, it requires information regarding the wind velocity with
respect to altitude.

4.1.2 Simulations for the total flight path: GRIB data and NOMADS data

To simulate the path of the vessel during the flight, a source of data for wind velocity with respect to altitude
is needed. Wind velocity as a function of altitude is published in a GRIB format, which can be freely ob-
tained through the National Oceanic and Atmospheric Administration (NOAA) NOMADS programme [20].
NOMADS, is an American publically owned weather simulation site, which provides free wind, temperature
and pressure data for the entire world [20]. This is the site which CUSF get their data from.

The NOMADS site provides wind, geopotential altitude and temperature data as a function of pressure, over
26 pressure levels with two levels of resolution, 0.5o or 1o [20]. The data can be accessed by following the
set of instructions in section C in the appendix.

The C++ programme uses the data from NOMADS by smoothing it over the 26 pressure levels. This pro-
vides a more continuous data stream where the data varies with altitude more smoothly than given in the
NOMADS format.

The NOMADS data only extends up to an altitude of ≈ 30km, thus data had to be extrapolated further
upwards to simulate the projections for the project. The method in which this data is extended beyond ≈
30km is dependent on the dataset being manipulated. For example, pressure reaches a minimum at high
altitudes, whilst temperature increases throughout the Stratosphere with altitude.

All the key aspects required for the simulations have now been covered, except for the project mass. To
evaluate this, the project components, must be known.
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4.2 Project Layout

The project was laid out in the format shown in figure (2). Figure (2) shows the payload at around 2 meters
from the parachute. The parachute was pre-deployed so when the balloon exploded, the parachute opened
immediately on descent. The balloon was attached to the top of the parachute canvas at around 5 me-
ters from the parachute to ensure maximum stability of the payload during its flight. Each component was
tethered together by nylon cord due to its light weight, strong properties. Buzzers and flashing LEDs were fit-
ted to the payload to alert anybody of the payload approaching, and assist in finding the payload on landing.

Figure 2: This shows the general layout to the project planned of how the project was layed out. A payload
was attached to the base of a parachute, which was then subsequently attached to the balloon from the top
of the parachute.

4.3 Project Components: External components

4.3.1 Balloon and parachute

The mass of the payload was estimated to be 1.6kg, meaning that the balloon and parachute with the re-
quired properties for a successful project could be selected appropriately.

Two sounding balloon’s were bought from the company Hwoyee [14]. The company provided a deal on two
of the 1600g sounding balloons, allowing for 2 potential launches. These balloons are capable of achieving
altitudes in excess of the 30km target set by the task brief and lifting masses in excess of that of the payload
[22]. Sounding balloons are designed to completely shred when they burst, leaving very little mass attached
to the payload. This helps in choosing a suitable parachute to achieve a safe payload descent rate.

A 4 ft parachute was bought to handle the weight of the payload. The parachute comes with a loop at the
top of the canvas, which the balloon could be tethered to, with nylon cord. The dimensions of the parachute
were chosen from the simulation data to return a safe descent rate.

The payload’s parachute was tested by launching it off the top of the Hicks building, approximately 20 me-
ters above the ground. The payload was attached to the parachute with nylon cord, and filled with weights
equaling the mass value of the contents required for the actual flight. The payload was dropped directly over
the edge of the roof and fell for approximately 2 seconds, a descent rate of 10ms−1. This was a higher descent
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rate than was expected, and very close to that of a free fall descent. However, the parachute did not have
enough time to fully respond to the payload’s descent for the entire flight, resulting in the payload being in
free fall for most of the descent. The payload received no damage during the test, making us confident that
the housing would be able to withstand an actual flight.

4.3.2 Helium

Helium was available from the main helium supplier for the Physics department at the University of Sheffield.
The price required for a suitable canister of helium was around £80. However, the department runs a buy
back scheme, where the department will buy back any of the helium which wasn’t used. This reduced the
effective cost of the required helium per flight to be £25, equivalent to just over 3m3.

Filling the helium balloon incorporated a cost of a gas adapter. An adapter was made within the physics
department for a negligible cost after the purchasing the Totex balloon.

4.4 Project Components: Internal components

The internal measuring components were bought and thouroughly tested prior to the launch. A test box was
constructed from Styrofoam, allowing the equipment to be run through cold conditions inside the insulated
box. Each component was tested for the following to maximise the probability of obtaining useful data from
the flight:

• Cold temperature: To ensure that any data measurements would not affected by the cold conditions
of the upper atmosphere.

• Length of operation: To see if the cold and harsh conditions affected the battery life of the equipment
in any way.

• Operation through the payload casing: To see if instruments that require external signals to operate
could do so through the payload housing.

The properties and functions of the internal components of the payload used for the flight are outlined below:

4.4.1 MSR145[19]

The MSR145 is a small lightweight unit that measures and stores data for temperature, pressure, humidity
and acceleration in 3 axes . The unit can be programmed to take all of these measurements over a set
time span, or continuously until interrupted by a user. The unit also has a rechargeable power supply and
on-board memory which can last from days to weeks depending on the unit’s usage. The software used to
extract the unit’s data has a unique feature for telling the user how much battery and memory life the unit
has depending on the usage.

The MSR145 was bought at a discounted price of £141.64 in return for publicity of the company.

4.4.2 Lascar temp logger +Lascar humidity logger [9]

Lascar electronics provided a temperature and a combined temperature and humidity logger for £31.30 to
measure the temperature and humidity of the atmosphere [16]. The units are self contained, and download
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data through a built in USB adapter. The units were tested thoroughly for battery lifetime and operation
temperature. Some free, spare lithium 1

2 AA batteries were included with the purchase, so both units could
be tested at no extra cost.
The temperature logger came with some free, spare thermocouples, capable of operating at the temperatures
expected at high altitudes. The thermocouples allow the temperature logger to measure the temperature
outside the payload box, without the logger itself being subjected to the harsh conditions of the upper at-
mosphere.

The humidity logger does not have the option of fitting external probes for data recording. The data is
recorded by a probe fitted to the end of the unit’s housing. As such, a hole was made for the unit so that
the data probe can stick out of the payload into the atmosphere during the payload’s flight.

4.4.3 Canon A430 camera [5]

The A430 Canon camera is capable of taking high enough quality images required by the brief. The moti-
vation behind choosing this particular model, other than the low price of £64, was due to its compatibility
with CHDK firmware.

CHDK (Canon Hack Development Kit) is a piece of free firmware, which consists of a script that can be
simply transferred onto the camera’s memory card [18]. This script allows the user to change the settings
of how the camera takes its images. The firmware can set the camera so that it takes an image over a
variety of time intervals and set the camera to standby mode between images to conserve battery life. The
simple nature of this script and the value for money for the camera makes this the method to provide images
showing evidence for the curvature of the Earth.

The camera was setup with the firmware script to take images every 10 seconds. The flash on the camera
was permanently turned off and the LCD screen on the camera only switched on every time an image was
taken. These settings were chosen to save the camera’s battery life, and allow anyone to check if the camera
was taking images during testing.

4.4.4 Tachyon HD video camera [15]

The Tachyon video camera was obtained for free in return for publicity and a review of the product. The
product itself is a prototype compact video camcorder capable of 6 hours of battery life as well as being
water resistant. The unit was tested for its recording lifetime and its sound recording quality. The image
quality and lifetime of the unit is excellent, but the sound recording quality is not. As such the MSR145
accelerometer data must be used to determine when the balloon explodes.

4.4.5 Xexun

The Xexun unit is a small and lightweight unit available for £64.03, which was used for finding the location
of the payload once it landed. The unit sends its own GPS co-ordinates in a text to anyone who calls it.
The unit came with a spare rechargeable battery and an O2 sim card to send a text reply to the user. O2
were chosen due to their high signal coverage of the UK. [7]
The unit is not likely to receive a signal above a few kilometres due to how mobile signals are broad-casted.
The main concern with the unit was whether it would work again after the payload descends from its max-
imum altitude. The unit was tested in conditions similar to these and worked. The battery life of the unit
lasted over several days, making it suitable for the project flight.
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4.4.6 Iphone-Viewranger app[24]

The I-phone was obtained as a donation from a member of staff in the department. It supports a GPS tracker
application called view-ranger. This acted as an ideal backup for all the position recording equipment, both
in terms of data logging and payload retrieval. The application stores and sends its GPS co-ordinates to an
internet application which can be accessed by the user during the payload flight .
The main flaw in using the I-phone is that it requires a mobile signal to operate. The signal becomes too
weak to detect above a few kilometres in altitude, resulting in potential gaps in the data recorded. The
network chosen for the I-phone was Vodafone due to the good network coverage and low running costs.

4.4.7 Garmin e-Trex H GPS logger [11]

The legal limitations of civil usage of GPS loggers, narrowed the choice of product down to the Garmin
based GPS loggers [22].
The Garmin e-Trex H GPS logger was one of the cheapest GPS loggers on the market. This unit has been
used on similar previous projects by other groups, which promoted confidence in the units operation for the
brief. The unit has a standard battery life of 17 hours and logs latitude, longitude and altitude from GPS
triangulation. It also comes in a protective waterproof casing and advertises the ability to work through
forest canopy cover, good properties for the task brief. The logger did not come with a computer interface
cable or any interpretation software. These could be purchased for a further £25-£30. Instead, a homemade
interface cable was fabricated, from researching other projects which have encountered this problem [?].

• Interface hardware

One the back of the Garmin e-Trex H, there is a 4 pin socket which their custom cable can interface with.
This then connects to a computer via an old RS232 connector. By identifying the role of each pin on the
Garmin device, an interface cable can be made from a basic 4- core cable and a female RS232 connector
(obtained for free from the physics department). Each pin of the RS232 connector was soldered to the
corresponding cable core, which was then attached to the GPS unit by fabricating an interface from a small
piece of PVC. This is shown in figure (3) [?].

Figure 3: The interface cable used to retrieved the data from the Garmin e-Trex H. The cable in this image
is stripped down to show the core cable structure.

To test the cable, the GPS logger was connected to a computer, with an RS232-USB converter, also available
for free within the department. By connecting the unit with a hyper window on a PC, the success of the
connection was determined. The hyper window outputted a data string in the GPS’s default output mode
every second. Each string had a number that incremented by 1 every second, showing the unit was outputting
a time variable. This confirmed the interface was working on a basic level. To retrieve the data from the
unit, information was extracted using third party software.

• Software interface
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The Software used to interface with the GPS unit was Easy GPS [12]. This software is free, downloadable,
and can interface with a wide range of GPS loggers. The GPS data, in tabulated form, for latitude, longitude
and altitude could then be extracted from the Garmin unit with the program, allowing comparisons between
simulated and actual data to be drawn.

4.5 Payload design

The payload was designed and constructed in two sections. The first section was a simple box based around
the payload components outlined above. It was made from a combination of Styrofoam and light weight
sponge, to keep the payload mass down.

Figure 4: An anotated overview of both the inner sections (upper figures) and outer shell (lower figures ) of
the payload.

Figure (4) shows the design of the external payload shell and a semi-exploded view of the payload box
contents. The top layer and outer walls are moved out of the way, so the payload contents can be viewed.
A scaled schematic of both the designs are shown in section D of the appendix.

The internal payload box design was based on making as many of the components as packed together as
possible, so weight of any unnecessary insulating material was lost. The general operation of the components
also heated the box, thus maintaining a safe operating temperature inside the payload[22].
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The box was split over 2 levels. The first level houses all the image and meteorological equipment. The
second level houses everything that requires access to external transmitted signals. This layout allows the
GPS units to have their receiving antennae near the surface of the payload housing to improve the signal
strength [22].

The second part of the payload design is concerned with the overall shape of the payload housing and the
method in which the payload is tethered to the parachute. The design of the payload shape came from the
advice of a qualified aerospace engineer to minimise spin, and therefore reduce any blurry images taken by
the camera. The design is shown at the bottom of figure (4).
Adding a tail to one end of the payload, will decrease the chance of spin even further, but will add weight.
If excessive spin had been observed during testing of the payload, then a tail would have been considered.

5 Project launch

The project was planned for the 7th and 8th of April from the Surprise View launch site. The university
was contacted on both days, in an attempt to increase the publicity and awareness of high altitude balloon
based projects. An overview of the launch attempts are described below.

5.1 Launch 1: 07/04/11

The first launch was aborted due to the lack of communication between air traffic control and the civil avia-
tion authority. A flights worth of helium and a balloon were lost due to this error, however the preparations
helped refine the filling strategy for the balloon and served as a trial run to ensure there were no problems
with the second launch.

The filling process of the balloon was a delicate task. The balloon had to be handled with Latex gloves to
ensure no perforations were made in the thin balloon shell. Once the balloon was filled enough to take its
own weight, it was attached to a mass equaling that of the payload. This way the balloon could be filled
with the minimum amount of helium required to launch the payload. This volume of helium is less than the
stated ground volume of the balloon. This meant that the helium had extra volume to expand into at high
altitudes, thus allowing the balloon to explode at higher altitudes than the altitude stated by the balloon
manufacturers [10] .

Once the balloon was filled, it was sealed with a combination of duct tape and cable ties at the balloon’s
neck. The payload contents were then activated and the box was sealed. The payload was then tethered
to the parachute and balloon, with 2mm nylon cord with the rough dimensions outlined in section (3) and
was ready for launch. It was at this point when the flight plan was rejected from air traffic control, and the
project had to be dismantled. The balloon was burst on deflation, resulting in only one opportunity for the
project launch.

5.2 Launch 2: 08/04/11

The second launch attempt was a success, with no problems with air traffic control or weather conditions.
The same preparation process was used as the previous day, however, clearance for launch from air traffic
control was confirmed prior to leaving for the launch site.

Launch commenced at 11:10 and the payload was retrieved from the GPS co-ordinates 52.849565N, 0.893740W,
transmitted from Xexun at 13.39. This transpired to be a small field 8km north of Melton Mowbray. The
vessel was spotted just south of Nottingham shortly before exploding at 13:05, at over 36km into the atmo-

18



sphere. The flight lasted 2 hours and 25 minutes and images of the edge of space can be found in the results
and analysis.

6 Results and Analysis

The results obtained from simulations and the meteorological measuring equipment is shown in figure (5).
The results are plotted over 4 separate graphs all with respect to the time of flight for the vessel. This allows
comparisons to easily be drawn between the data simulated and measured.

Figure 5: This shows the results of simulations and data recorded for the flight. The figure is split into 4
plots, A, B, C and D which compare relevant data profiles to each other. All the data is plotted with respect
to time so all the plots can be cross referenced

6.1 Pressure data

The MSR145 successfully returned the pressure data for the flight shown in figure (5). Plot A shows the
MSR pressure data, the standard pressure profile data used in the simulations and the pressure data from
the NOMADS website. By converting all the pressure profiles into altitude profiles from equation (1) and
(2), the ascent and descent path of the vessel can be analysed over all 3 data sets.
The altitude profiles with respect to time are remarkably different for the MSR145 and the simulation cases.
Plot A of figure(5) suggests that the payload ascended quicker than simulations. This behavior may be due
to the underestimation of the amount of bouyancy in the balloon. This theory is supported for the standard
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profile simulation, which predicts a higher burst altitude than that derived from the MSR145 pressure data.

The simulations suggest that the balloon should accelerate the higher the balloon travels, however, the
MSR145 data demonstrates a steady ascent. This may be attributed to the fact that the simulations do
not consider the fluctuations in pressure and veritical winds due to turnbulance. The MSR145 was also
sealed within the payload; although the payload was not air tight, the flow of air inside the payload was
obstructed, in order to maintain the payload’s insulation. This could mask, or even removed, the average
vertical acceleration behaviour of the payload.

The lowest pressure value measured on the MSR145 was 2.4mb, which from equations (1) and (2) corre-
sponds to an altitude of 41000m. The unit has a measuring uncertainty of ±2.5mb, meaning the maximum
pressure the balloon bursts at is 4.9mb. This pressure provides a lower limit on the vessel’s acheived altitude
of 36100m.

The upper altitude limit from the MSR145 pressure data is unphysical. This is because the lowest pressure
readings with the associated error is less than or equal to zero. As such the unphysical error bars have
been removed from the data points in figure (5) to highlight the problem. From the international standard
atmosphere, pressure beyond 47km in altitude is less than 8mb [2]. This pressure will cause the balloon to
breach the burst volume radius of 4.72m(≈ 8mb), putting a physical upper limit on the vessel’s maximum
altitude.

The time the payload reaches its maximum height and the Tropopause can be confirmed by comparing the
MSR145 accelerometer data to the altitude profile from the MSR145 pressure data. This is shown in plot B
in figure (5).

At ≈ 2100s, there is a large amount of variation in acceleration in all axes. This period of varied acceleration
corresponds to a height region of ≈10000m-15000m. Comparing the altitude and accelleration results to the
NOMADS wind-velocity data, this acceleration profile agrees with the wind velocities represented in plot B,
figure (5). The drop in high wind velocities mark the end of the Tropopause, as descibed in section 3.1.1.

A sharp drop in the vertical acceleration is also observed at ≈ 7100s. This is the time at which the pressure
data defines a maximum in the payload’s altitude. As such the acceleration confirms the point in time when
the balloon explodes, which agrees with both the simulation and NOMADS profile based simulations.

6.2 Temperature data

6.2.1 External temperature data.

The Lascar temperature logger obtained data for the flight showing exactly the opposite of what was ex-
pected. This is shown in plot C, figure (5).
By plotting this data against the humidity logger temperature , it can be seen that the failed temperature
logger outputs a temperature profile that mirrors that of the humidity logger. By transforming the flawed
temperature data vertically so the start temperature was 19o C (confirmed by data from both the humidity
and MSR145 loggers prior to the flight) and by reflecting data in the line T=19oC, a corrected version of
the temperature profile was achieved.

The validity of the corrected data cannot be fully trusted, as there may be some form of systematic error in
the data manipulation. This is emphasised in plot C, figure (5), where the recorded temperature from the
Lascar temperature logger, the NOMADS data for the temperature, and the temperature from a simulated
profile are shown. The Lascar temperature value does not agree well with the other datasets, meaning there
is more than likely some error associated with the corrected data. However, the overall temperature profile
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shape agrees with the simulation results, and the different temperature behaviors of the different levels of
atmosphere are clearly present in the plot.

6.2.2 Internal temperature conditions of the payload

The MSR145 monitored the internal temperature of the payload. Plot D in figure (5) shows the MSR145
temperature data against both the Lascar temperature results. The effectiveness of the payload’s insulation
is shown, with the data curves showing a respectable decline in the temperature stability, the further away
the recording apparatus is place from the payload box itself.

The temperature inside the box never dropped below 291.6 ±0.01K, or raises above 300.9±0.01K during the
flight, a good operating temperature range of all the units inside the payload.

6.3 Location data

6.3.1 Garmin e-Trex GPS unit

The Garmin GPS logger failed to take any readings during the payload flight. The unit took readings when
the payload was sealed up. However, it stopped collecting data shortly after launch. The reason for this is
unclear, as the unit did not experience any conditions it had not already been tested for. As such, all latitude
and longitude data must be retrieved from the I-phone backup unit, and altitude data must be recovered
from pressure-altitude relations from the MSR145.
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6.3.2 I-phone data

Figure 6: This is the results of the actual flight path from View-ranger data compared to simulations. The
thin red line represents the I-phone data, whilst the black line is the simulation according to the Cambridge
simulator. The orange and yellow lines are the simulation paths returned from the designed C++ programme
corresponding to NOMADS and standard atmospheric profile data respectively

The I-phone lost its signal a few times throughout the flight . However a relatively successful recording of
the payload’s track was obtained and shown in figure (6).

The payload path(red line) followed the Cambridge simulation path (black line) quite accurately, however
the simulation results from the C++programme were not so accurate (orange and yellow lines). Assuming
this result is not due to poor statistics, the inaccuracy of the programme could be attributed to the following
factors.

• Firstly, the C++ programme does not take into account the change in average molecular weight with
respect to altitude. From equation 10, the horizontal force on the payload is proportional to this factor
and therefore will affect the horizontal force- altitude profile acting on the payload.

• Secondly the altitude profile from simulations of the payload flight, as seen in figure(5), shows an
accelerating profile with the payload altitude. However the MSR145 unit indicates a constant ascent
velocity over time. If a constant ascent rate was used, then the vessel would be subjected to higher
altitudes, and therefore different wind velocities for different lengths of time. This will alter the vessel’s
simulated trajectory so that it would presumabley follow the actual flight path better.
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• Finally the wind velocity at each level was evaluated so that the wind speeds stated by NOMADS
are represented as a smoothed profile as shown in plot B, figure (5). Better simulations require more
information about how wind speeds vary with altitude, or more wind data with respect to altitude.

The altitude data from the I-phone is unreliable due to the data loss throughout the payload flight. As such
the altitude data for the vessel relies entirely on the MSR145.

6.4 Humidity data

The humidity data for the flight is plotted in Plot C in figure (5). From section 3.1.1, the results returned
are what was expected for the humidity profile of the atmosphere. The humidity generally decreases with
altitude in the first 5km of ascent. This is just due to the weather conditions of the day. After the first
5 km of altitude, the humidity remained relatively constant up to an altitude of around 16.5km. This is
approximately the altitude in which the Tropopause exists, and thus defines the boundary at which water
vapour can evaporate to. At 25km, the humidity drops to 0 percent. This is again expected as the start of
the Stratosphere exists at this altitude. The reverse relationship is observed upon the payload’s descent.

6.5 Images

The Canon camera successfully took images of the horizon, every 10 seconds, for the entire flight, with very
little image quality lost due to the movement of the payload. As the payload reached its maximum altitude,
the curvature of the earth became very apparent, as shown in figure (7).

Figure 7: An image taken of the Earth near the maximum altitude of the payload

The Tachyon HD video camera took video footage of the entire flight of the payload. However, the lens

23



condensed over no more than 20 minutes into the flight, thus obscuring any further footage. This may have
been avoided if the camera was set up and sealed in a dehumidified room a few days prior to the launch.
By comparing the dew point temperature data from the humidity logger, to the external temperature data
in plot B in figure(5), the temperature comes into close proximity to the dew point temperature at ≈ 2000s.
The dew point temperature is the temperature at which water condenses out of air, which may explain the
fogging of the HD camera lens near the start of the flight.

7 Conclusion

The flight of the payload was mostly successful, and it acheived all of the goals set by the task brief. Only
one of the two planned launches were a success, resulting in the payload reaching a minimum altitude of
36100m. Temperature, humidity, and pressure profiles were also recorded, throughout the flight, which
after data reduction, mirrored the simulations. The external temperature recorded for the project returned
systematically affected data, which was corrected as much as possible for the data analysis.
The GPS co-ordinates of the payload throughout the flight were not recorded by the primary GPS data log-
ger. The secondary GPS logger recorded some data, however data is missing for the higher altitudes of the
flight. This Meant the height of the payload hadto be infered from the pressure data and equations (1) and (2

Pressure measurements were taken by the MSR145. The unit has an error of 2.5mb associated with it,
resulting in the maximum altitude for the payload being inferred from standard atmosphere measurements.
This returns a maximum altitude of 47km.

From the MSR145, the tempertature inside the payload did not drop below 291.6 ±0.01K. This is a per-
fectly reasonable operating temperature for the payload’s electrical equipment, meaning that the insulating
material used for the payload’s construction was the perfect choice.

The simulation programme written for the project, took into account most factors that affect the measure-
ments and the trajectory of the payload. The results did not fit the GPS data as well as the Cambridge
simulation. This may be a consequence of poor statistics, or due to inaccuracies in the designed C++
programme.
The design, construction and testing of all the components yielded all positive results, and the simulation
programme was successfully written so it could be used by anybody wishing to undertake a similar project.
All activities and simulations in the project are documented on the project website.
In conclusion, the project was a success on the whole and satisfied the task brief. If more time and funding
was available, improvements could be made on the simulation programme, the method of tracking, and the
method of obtaining data. The possibility of controlling the payload during some part of the flight would
also go towards reducing the risks of the project failing.

8 Acknowledgements

I would like to thank my project partners Lawrence Wilkinson, Philip Carpenter and Alex Mackie for their
sterling efforts in the project. Without them, this report would tell a much more unsuccessful story.

References

[1] C. Donald Ahrens. Meteorology today: an introduction to weather, climate, and the environment.
Thomson Brooks/ cole, 8 edition.

[2] U.S. Airforce. U.s. standard atmopshere 1976. National Aeronautics space administration, 1976.

24



[3] Kaymont Balloons. Supplier of totex balloons. http://www.kaymont.com/, Novemeber 2010.

[4] George Batchelor. An introduction to fluid dynamics. Cambridge university press, Cambridge New
York, 2000.

[5] Canon. A430 canon camera. http://www.canon.co.uk/for_home/product_finder/cameras/

digital_camera/powershot/PowerShot_A430/, January 2011.

[6] COAA. Sondemonitor software and general operation of radiosondes. http://www.coaa.co.uk/

sondemonitor.htm, Novemeber 2010.

[7] Uk Mobile coverage calculator. Uk mobile signal coverage. http://ukmobilecoverage.co.uk/, March
2011.

[8] US GRIB data website. Grib us. http://www.grib.us/, February 2011.

[9] Lascar Electronics. Lascar electronics. http://www.lascarelectronics.com, February 2011.

[10] Cambridge University Space flight. Society web page. http://www.srcf.ucam.org/cuspaceflight/,
Semptemer 2010.

[11] Garmin. Garmin e-trex h gps specifications. https://buy.garmin.com/shop/shop.do?cID=144&pID=
8705&ra=true, December 2010.

[12] Easy GPS. Garmin gps data recovery software. http://www.easygps.com/, March 2011.

[13] Robert Harrison. Icarus project. http://www.robertharrison.org/icarus/wordpress/about/, Oc-
tober 2010.

[14] Hwoyee. Hwoyee sounding balloons. http://www.hwoyee.com/, March 2011.

[15] Tachyon. Inc. Tachyon hd helmet cameras. http://www.tachyoninc.com/, March 2011.

[16] Dataq instruments. Dataq instruments, supplier of lascar products. http://www.dataq.com/, March
2011.

[17] Alexei Karpenko. Halo project. http://www.natrium42.com/halo/flight2/, October 2011.

[18] Canon Hack Development Kit. Firmware to adjust camera settings. http://chdk.wikia.com/wiki/

CHDK, November 2010.

[19] MSR. Producer of the msr145, November 2010.

[20] National Oceanic and Atmospheric Administration. Main webpage. http://www.noaa.gov/, March
2011.

[21] Richard J Chorely Roger G Barry. Atmosphere, Weather and Climate. Routledge, 9 edition.

[22] UK High Altitude Society. Wikibooks on all aspects of high altitude ballooning. http://wiki.ukhas.
org.uk/, October 2010.

[23] T.L.Heath. The works of Archimedes. Number 256. Cambridge University Press.

[24] Viewranger. I-phone gps tracking system. http://www.viewranger.com/, November 2010.

25



Appendices

A Glossary of equation parameters

Parameter Definition
P(h) Pressure with respect to altitude
Pb Pressure at the base of the atmospheric layer
Tb Temperature at the base of the atmospheric layer
Lb Lapse rate of the respective atmospheric layer
h Altitude of vessel
g Gravitational field strength
M or ma Average molecular mass of the atmosphere =0.028964 kg/mol
R Gas constant = 8.3144
Fb Buoyancy force
kb or k Boltzmann’s constant
n Number of moles
Fg Gravitational force
v Velocity of the vessel
vwind Velocity of the wind
Cd Drag coefficient (Dependent on payload shape)
mT Mass of the payload and its components

26



B Summary of the payload components for the project

Figure 8: A summary of the components bought for the project

C Instructions for obtaining data from the NOMADS site

0. Useful url for info: http://nomads.ncdc.noaa.gov/guide/index.php?name=advanced#adv-gdsascii

1. Go to: http://nomads.ncep.noaa.gov/

2. Click on "GFS 1.0x1.0 Degree - OpenDAP"

3. Click on latest forecast at bottom: e.g. "30: gfs20110406/: dir"

4. Click on latest "gfs_*z:" link, e.g. "3: gfs_06z: GFS fcst starting from 06Z06apr2011, downloaded Apr 06 10:35 UTC info"

5. Cut and paste base url under "OPeNDAP/DODS Data URL:", e.g.

"http://nomads.ncep.noaa.gov:9090/dods/gfs/gfs20110406/gfs_06z"

This is 6am forecast on 6th April 2011.

6. Now add the parameters to download the data. Parameters we want are

i. ugrdprs (m/s wind speed in E-W direction)

ii. vgrdprs (m/s wind speed in N-S direction)

iii. hgtprs (geopotential height in m, i.e. altitude corresponding to pressure

1000 975 950 925 900.. 7 5 3 2 1)

Longitude: 0.00000000000E to 359.00000000000E (360 points, avg. res. 1.0 deg)

Latitude: -90.00000000000N to 90.00000000000N (181 points, avg. res. 1.0 deg)

Altitude: 1000.00000000000 to 10.00000000000 (26 points, avg. res. 39.6)

Time: 06Z06APR2011 to 06Z14APR2011 (65 points, avg. res. 0.125 days)
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Values for brackets:

Latitude: x = 53.3+90.0 / 1.0 = 143

Longitude = 358.4-0.0 / 1.0 = 358

Altitude - we want all values, so 0:25

Time = [Number of hours between now and 06:00 on 06 April 2011) / 24] / 0.125 = 4 for 18:00 on 06 April 2011

So the url we want is:

http://nomads.ncep.noaa.gov:9090/dods/gfs/gfs20110406/gfs_06z.ascii?ugrdprs[4][0:25][143][358]

This gives the following output at the foot of the page:

time, [1]

734234.75

lev, [26]

1000.0, 975.0, 950.0, 925.0, 900.0, 850.0, 800.0, 750.0, 700.0, 650.0,

600.0, 550.0, 500.0, 450.0, 400.0, 350.0, 300.0, 250.0, 200.0, 150.0,

100.0, 70.0, 50.0, 30.0, 20.0, 10.0

lat, [1]

53.0

lon, [1]

358.0

The above is correct: latitude and longitude is only known to 1

degree, the pressure goes from 1000->10 and the time value is the

fifth one in the array (this can be checked by entering [0:64] in the

first bracket instead of [4] and checking that the fifth value is

indeed equal to 734234.75
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D Payload design schematics

Figure 9: A scaled schematic of the payload shell
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Figure 10: A scaled schematic of the inner payload box
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E A copy of the basic algorithm implemented in the C++ simu-
lation

Figure 11: This is a basic map of the C++ algorithm used to evaluate to payload flight and any meteorological
data projections.
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F Results from testing of the payload components

F.1 Simulation results for the Expected meteorological data obtained from the
flight

F.2 MSR145

The total run time for the MSR test was 4.89 hours. The software indicated that the unit still had several
days of battery life and memory remaining, making it suitable for the project.

Figure 12: This shows an extended test on the MSR145 unit.

The unit was placed both inside and outside the test box in a -20oC freezer for significant time periods.
A two stage test of the MSR145 was completed on a single charging of the unit. MSR145 was first placed
in the test box in the freezer for 2.52 hours. The temperature recorded decreased slowly until it reaches a
minimum temperature of −13.6oC at around 1.34 hours.
The MSR145 measured a small pressure drop pressure in the freezer as a consequence to a rearrangement
of the ideal gas law:

P =
nRT

V
(12)

The second section of the test consisted of the MSR145 being placed in deflated plastic container (without
the test box) in the freezer for a further 1.28 hours. The unit recorded a pressure decrease of around 76mb,
as well as an minimum temperature of −16.5oC. The time taken for the unit to reach this minimum tem-
perature is less than half the time it took in the test box. This demonstrates the good insulation properties
of the test box material.

F.3 Lascar temperature and temperature+humidity loggers

The temperature logger was tested both in and out the test box in the freezer. as shown in figure (13).
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Figure 13: This is the projected meteorological results expected to be returned from the payload after the
flight.

This figure demonstrates the insulating properties of the test box. The Temperature logger inside the box
took much longer time to reach a minimum steady temperature than when it was not in the box.
The lifetime of both the Temperature and combined temperature and humidity loggers is sufficient with
testing lasting beyond 9 hours in a variety of different conditions (outdoors, indoors, sea air, etc).

Figure 14: This shows the Lascar Temperature /Humidity and Temeprature logger being tested for an
extended period of time in a variety of conditions (indoors, city centre, sea air, etc).

F.4 I-phone Viewranger

The tracker was tested by taking the I-phone inside the test box around Sheffield city centre, whilst other
members of the group tracked its whereabouts. The result of the test was correct and accurate, showing

33



that the unit is capable of receiving a signal through the payload housing material. The operation of the
View-ranger application on the I-phone appeared to be a power draining process lasting only an hour or so
after the predicted flight time. This may be due to the fact that the I-phone model used is an old one, thus
the battery would have been suffering from fatigue.

F.5 Garmin e-Trex H testing

The unit was tested inside the test box to see if a GPS signal could penetrate the payload’s insulation. The
unit was left inside the box over a journey to ensure the unit could record a track. A test where the unit
was placed inside a car whilst inside the test box and driven around the city of Sheffield. The unit logged
an accurate track for the journey, making it suitable for the task at hand.

Figure 15: This shows a test of the Garmin e-Trex H unit. The unit travelled for 2 hours inside the testbox,
which was in turn inside a car. There are no gaps in data in the returned track

F.6 Xexun

To simulate the conditions for that may cause the Xexun to fail, the unit was placed in the freezer for a
period of 1 hour in the test box. It was then taken out and signalled to see if a response was texted back.

The first test resulted in the unit replying after a delay of approximately 10 minutes. The unit was signalled
several times prior to the response at 10 minutes and the unit texted back several times after the 10 minutes
were up. This indicates that the signals sent to the unit were logged and a reply was sent when the unit was
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capable of doing so. This could be attributed to the location of the test which has a low O2 network signal.
This process was repeated and the unit was found to respond almost immediately on the second test.

G C++ programme source code

#include<stdio.h>

#include<stdlib.h>

#include<iostream>

#include <cmath>

#include "altitudeprop.h"

//#include"falling.h"

using namespace std;

int main()

{

FILE *outfile1;

force test;

test.parameters();

outfile1=fopen("FLIGHT_DATA.csv","w");

cout<<" the number of moles of gas put into balloon for lift: "<<test.nmoles()<<" " <<endl;

cout<<"programme running.... please wait....."<<endl;

fprintf(outfile1,"Time (s),North-south distance (m),east-west distance (m),Altitude (m),pressure (pascals),temperature (kelvin), baloon volume during ascent,North-south wind speed, east-west wind speed,\n");

while (test.burst<1){

//while (test.volume()<test.burstvol){

for(int j=0; j<=test.max; ++j){

test.temp();

test.pressure();

test.volume();

test.height();

//cout<<"grav:"<<test.grav()<<" buoy:"<<test.buoy()<<" drag"<<test.drag()<<" force"<<test.Ftotal()<<"burst"<<test.burst<<"dist"<<test.tdistn<<" "<<test.tdiste<<" "<<j<<""<<endl;

//fprintf(outfile1,"%f,%f,%f,\n",test.tdistn,test.tdiste,test.height());

test.fvelocityassign();

test.time();

//test.time_step;

test.distancen();

test.distancee();

test.velocity_update();

test.increment();

}

test.temp();

test.pressure();

test.volume();

//cout<<"the height is "<<test.height()<<""<<endl;
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//cout<<"grav:"<<test.grav()<<" buoy:"<<test.buoy()<<" drag"<<test.drag()<<" force"<<test.Ftotal()<<"burst"<<test.burst<<"dist"<<test.tdistn<<" "<<test.tdiste<<""<<endl;

// cout<<"timestep "<<test.time_step<<"time gone"<<test.initial_time<<"alt "<<test.height()<<"vwind "<<test.vwn()<<"v balloon "<<test.velocitybn<<"distance:"<<test.tdistn<<""<<endl;

//system("pause");

fprintf(outfile1,"%f,%f,%f,%f,%f,%f,%f,%f,%f,\n",test.initial_time,test.tdistn,test.tdiste,test.height(),test.pressure(),test.temp(),test.volume(),test.vwn(), test.vwe());

test.fvelocityassign();

test.time();

//test.time_step;

test.distancen();

test.distancee();

test.velocity_update();

test.increment();

}

double top= test.height();

double halftime=test.initial_time;

double pop_north=test.tdistn;

double pop_east=test.tdiste;

/*while(test.height()>=0)

{test.fvelocity= sqrt((test.ivelocity*test.ivelocity)+2*(test.grav())*test.height());

test.velocity_update();

test.increment();

cout<<"OVERSHOOT"<<endl;}

// }

*/

cout<<"programme running.... now over 50% completed.... please wait....."<<endl;

test.ivelocity=0;

test.fvelocity=0;

while(test.height()>=0&&test.burst==1){

//cout<<"AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA"<<endl;

for(int y=0; y<test.max; y++){

if(test.height()>=0){

test.temp();

test.pressure();

test.height();

test.fvelocityassign();

test.time();

test.distancen();

test.distancee();

//cout<<"the height is "<<test.height()<<""<<endl;

//cout<<"grav:"<<test.grav()<<" bouy:"<<test.buoy()<<" drag"<<test.freefall()<<" force"<<test.Ftotal()<<"burst"<<test.burst<<""<<endl;

//fprintf(outfile1,"%f,%f,%f,\n",test.tdistn,test.tdiste,test.height());
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test.velocity_update();

test.decrease(); }

}

if (test.height()>=0){

test.temp();

test.pressure();

test.height();

// test.Area();

// cout<<"the height is "<<test.height()<<""<<endl;

//cout<<"grav:"<<test.grav()<<" bouy:"<<test.buoy()<<" drag"<<test.freefall()<<" force"<<test.Ftotal()<<"burst"<<test.burst<<""<<endl;

test.fvelocityassign();

test.time();

test.distancen();

test.distancee();

fprintf(outfile1,"%f,%f,%f,%f,%f,%f,%f,%f,%f,\n",test.initial_time,test.tdistn,test.tdiste,test.height(),test.pressure(),test.temp(),test.volume(),test.vwn(), test.vwe());

test.velocity_update();

test.decrease();}}

cout<<"timestep of last point is "<<test.time_step<<""<<endl;

system ("pause");

cout<<"Balloon bursts at "<<top<<" Time for flight is "<<test.initial_time<<" which is"<<test.initial_time/3600<<" hours "<<endl;

system ("pause");

cout<<"Balloon time for ascent "<<halftime<<" Time for descent is "<<test.initial_time-halftime<<""<<endl;

system ("pause");

cout<<"the distance the balloon travels north is"<<test.tdistn<<" and east is "<<test.tdiste<<""<<endl;

system ("pause");

cout<<"The balloon pops at "<<pop_north<<" north and "<<pop_east<<" from the takeoff point"<<endl;

system ("pause");

cout<< "the ascent rate is "<<top/halftime<<" and decsent rate is "<<top/(test.initial_time-halftime)<<""<<endl;

system ("pause");

fclose(outfile1);

cout<< "A file has now been saved to the directory with all the relevant data saved inside. This file should be called ’FLIGHT_DATA.CSV’"<<endl;

system ("pause");

cout<<"Thankyou for using the EOS simulation programme... good luck with your project!"<<endl;

system ("pause");

return 0;

}

#ifndef ALTITUDEPROP_H

#define ALTITUDEPROP_H

class force {

private: double alt;

double turnover1;

double turnover2;

double turnover3;
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double temp1;

double temp2;

double temp3;

double groundpressure;

double groundvol;

double n;

double groundtemp;

//double ivelocity;

//double fvelocity;

//double initial_time;

public: force();

double ma;

double s;

double para_area;

double burst;

double burstvol;

double cd();

double i_vwe;

double time_step;

double tdistn;

double tdiste;

double max;

double hbase;

double mass();

double altpressure();

double increment();

double decrease();

void parameters();

double height()const;

double temp();

double pressure();

double initial_time;

double ivelocity;

double fvelocity;

double nmoles();

void fvelocityassign();

void velocity_update();

double volume();

double drag();

double buoy();

double grav();

double Ftotal();

double fvelocity_update();

double time();

double Area();

double freefall();

int parameter_choice1;

int parameter_choice2;
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int parameter_choice3;

double boxmass;

double balloonmass;

double balloonmassburst;

double velocitybn;

double velocitybe;

double distancee();

double distancen();

double vwn();

double vwe();

double cd1;

double cd2;

double ta;

double tb;

double tc;

double td;

double te;

double tf;

double tg;

double th;

double ti;

double tj;

double tk;

double tl;

double tm;

double tn;

double to;

double tp;

double tq;

double tr;

double ts;

double tt;

double tu;

double tv;

double tw;

double tx;

double ty;

double tz;

double pa;

double pb;

double pc;

double pd;

double pe;

double pf;

double pg;

double ph;

double pi;

double pj;

double pk;

double pl;
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double pm;

double pn;

double po;

double pp;

double pq;

double pr;

double ps;

double pt;

double pu;

double pv;

double pw;

double px;

double py;

double pz;

double ha;

double hb;

double hc;

double hd;

double he;

double hf;

double hg;

double hh;

double hi;

double hj;

double hk;

double hl;

double hm;

double hn;

double ho;

double hp;

double hq;

double hr;

double hs;

double ht;

double hu;

double hv;

double hw;

double hx;

double hy;

double hz;

double vina;

double vinb;

double vinc;

double vind;

double vine;

double vinf;

double ving;

double vinh;

double vini;

double vinj;
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double vink;

double vinl;

double vinm;

double vinn;

double vino;

double vinp;

double vinq;

double vinr;

double vins;

double vint;

double vinu;

double vinv;

double vinw;

double vinx;

double viny;

double vinz;

double evina;

double evinb;

double evinc;

double evind;

double evine;

double evinf;

double eving;

double evinh;

double evini;

double evinj;

double evink;

double evinl;

double evinm;

double evinn;

double evino;

double evinp;

double evinq;

double evinr;

double evins;

double evint;

double evinu;

double evinv;

double evinw;

double evinx;

double eviny;

double evinz;

};

#endif

#include<stdio.h>

#include<stdlib.h>

#include<iostream>

#include <cmath>
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#include"altitudeprop.h"

//#include"falling.h"

using namespace std;

force::force() {alt=0;}

void force::parameters()

{ parameter_choice3=1;

pa=1000;

pb=975;

pc=950;

pd=925;

pe=900;

pf=850;

pg=800;

ph=750;

pi=700;

pj=650;

pk=600;

pl=550;

pm=500;

pn=450;

po=400;

pp=350;

pq=300;

pr=250;

ps=200;

pt=150;

pu=100;

pv=70;

pw=50;

px=30;

py=20;

pz=10;

cout<<"Hello and welcome to the EOS payload simulation programme"<<endl;

system("pause");

printf("If you wish to run the simulation for data from the EOS flight simulation on the 8th of April, press 1, Otherwise press 2, followed by the enter key\n");

scanf("%d",&parameter_choice1);

if (parameter_choice1==1){

max=100;

parameter_choice2=2;

parameter_choice3=1;

turnover1=11000;

turnover2=20000;

42



turnover3=50000;

temp1=215;

temp2=215;

temp3=268;

groundtemp=283;

groundvol=(nmoles()*8.31*groundtemp)/groundpressure;

groundpressure=101000;

ma=28*1.67E-27;

s=0.1;

burst=0;

para_area=0.8485;

// cout<< "temp1: "<<temp1<<" temp2: "<<temp2<<" temp3: "<<temp3<<" turnover 1, 2 and 3: "<<turnover1<<" "<<turnover2<<" "<<turnover3<<" "<<endl;

burstvol=(4/3)*3.141592654*pow(4.72,3.0);//((4/3)*3.141592654*4.2*4.2*4.2);

boxmass=1.6;

balloonmass=1.6;

balloonmassburst=0.8;

//mass=1.0;

ivelocity=0;

fvelocity=0;

initial_time=0;

cd1=0.25;//0.47;

cd2=0.5;

i_vwe=0;

time_step=0;

velocitybn=0;

velocitybe=0;

tdistn=0;

tdiste=0;

vina=-2.99;

vinb=-7.6099997;

vinc=-9.53;

vind=-9.139999;

vine=-7.6699996;

vinf=-5.95;

ving=-6.02;

vinh=-5.91;

vini=-5.73;

vinj=-5.72;

vink=-7.17;

vinl=-8.82;

vinm=-9.51;

vinn=-9.559999;

vino=-8.2;

vinp=-6.4;

vinq=-2.8;

vinr=3.5;

vins=7.2000003;

vint=-0.85999995;

vinu=-5.08;
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vinv=-7.6299996;

vinw=-7.74;

vinx=-5.99;

viny=-7.7799997;

vinz=-5.89;

evina=1.6999999;

evinb=4.11;

evinc=3.9499998;

evind=2.23;

evine=0.48999998;

evinf=0.01;

eving=0.98999995;

evinh=2.72;

evini=4.15;

evinj=5.0499997;

evink=6.54;

evinl=9.179999;

evinm=12.66;

evinn=15.32;

evino=15.7;

evinp=15.2;

evinq=15.7;

evinr=15.400001;

evins=10.2;

evint=12.34;

evinu=9.75;

evinv=6.29;

evinw=2.76;

evinx=1.53;

eviny=-1.41;

evinz=-0.96;

ha=230.90701;

hb=438.65402;

hc=652.81104;

hd=873.41003;

he=1100.727;

hf=1573.618;

hg=2072.8381;

hh=2602.1511;

hi=3161.9312;

hj=3754.5342;

hk=4385.187;

hl=5060.1;

hm=5785.81;

hn=6570.4097;

ho=7423.6797;

hp=8364.54;

hq=9413.84;
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hr=10610.67;

hs=12033.64;

ht=13833.2295;

hu=16351.21;

hv=18544.549;

hw=20621.08;

hx=23792.4;

hy=26320.44;

hz=30731.809;

cout<<"pre defined values used"<<endl;

}

if (parameter_choice1==2){

printf("This option requires you to enter some data in a similar format to that given by the NOMAD website.\n");

system("pause");

printf("The NOMAD website from NOAA provides data for parameters over\n 26 altitude levels defined by pressure.\n");

system("pause");

printf("To ensure complete compatability with this programme, any data read into the program must be adjusted to a format, whereby each line of data looks like the following example:\n");

printf("[0][12][0], 387\n\n[0][13][0], 335\n\n[0][14][0], 320\n");

system("pause");

printf("The text at the top and the bottom of the file should also be removed, \n so all you have as a coloumn of data, 26 rows long and appears in the \nformat shown above.\n");

system("pause");

printf("the spacing between the data should not be altered...this will cause the\n programme to fail\n");

system("pause");

printf("Once this is acheived, save all the data as ’TXT’ files. Each files should be \nentitled the following and saved in the same folder\n as the programme:\n");

system("pause");

printf("For temperature data, save the file as temp.txt\n");

system("pause");

printf("For height with pressure data, save the file as height.txt\n");

system("pause");

printf("For east to west wind data, save the file as ugdprs.txt\n");

system("pause");

printf("For north to south wind data, save the file as vgdprs.txt\n");

system("pause");

printf("The amount of data you enter depends on the following decision:\n");

printf("(NOTE!!!! The data files and the programme should be placed\n all in the same directory, so that the\n programme can find the files required.\n Before continuing, you should quit the programme now,\n ensure this is the case and start the simulation again.\n Otherwise, continue...\n");

system("pause");

printf("If you want to use standard profiles for temperature and pressure described on the website\n with your own variables, press 2 \n(NOTE! wind data and height data from nomads must still be input for \n this option! This is because the data from NOMAD relies on\n this height data )\n\n");

printf("If you want to input all that data in the these txt files for pressure, temperature, north-south and east-west wind speeds, press one\n");

scanf("%d",&parameter_choice2);

if (parameter_choice2==1){parameter_choice3=2;

printf("You are now putting in ALL data from files you have already obtained\n");

system("pause");

printf("before continuing, please ensure all the files are saved in the formats and\n directories described previously\n");

system("pause");

45



printf("reading in files...\n");

FILE *infiletemp;

FILE *infileup;

FILE *infilenswind;

FILE *infileewwind;

infiletemp=fopen("kelvin.txt","r");

fscanf(infiletemp, "[%*d][%*d][%*d], %lf\n\n", &ta );

fscanf(infiletemp, "[%*d][%*d][%*d], %lf\n\n", &tb);

fscanf(infiletemp, "[%*d][%*d][%*d], %lf\n\n",&tc);

fscanf(infiletemp, "[%*d][%*d][%*d], %lf\n\n",&td);

fscanf(infiletemp, "[%*d][%*d][%*d], %lf\n\n",&te);

fscanf(infiletemp, "[%*d][%*d][%*d], %lf\n\n",&tf);

fscanf(infiletemp, "[%*d][%*d][%*d], %lf\n\n",&tg);

fscanf(infiletemp, "[%*d][%*d][%*d], %lf\n\n",&th);

fscanf(infiletemp, "[%*d][%*d][%*d], %lf\n\n",&ti);

fscanf(infiletemp, "[%*d][%*d][%*d], %lf\n\n",&tj);

fscanf(infiletemp, "[%*d][%*d][%*d], %lf\n\n",&tk);

fscanf(infiletemp, "[%*d][%*d][%*d], %lf\n\n",&tl);

fscanf(infiletemp, "[%*d][%*d][%*d], %lf\n\n",&tm);

fscanf(infiletemp, "[%*d][%*d][%*d], %lf\n\n",&tn);

fscanf(infiletemp, "[%*d][%*d][%*d], %lf\n\n",&to);

fscanf(infiletemp, "[%*d][%*d][%*d], %lf\n\n",&tp);

fscanf(infiletemp, "[%*d][%*d][%*d], %lf\n\n",&tq);

fscanf(infiletemp, "[%*d][%*d][%*d], %lf\n\n",&tr);

fscanf(infiletemp, "[%*d][%*d][%*d], %lf\n\n",&ts);

fscanf(infiletemp, "[%*d][%*d][%*d], %lf\n\n",&tt);

fscanf(infiletemp, "[%*d][%*d][%*d], %lf\n\n",&tu);

fscanf(infiletemp, "[%*d][%*d][%*d], %lf\n\n",&tv);

fscanf(infiletemp, "[%*d][%*d][%*d], %lf\n\n",&tw);

fscanf(infiletemp, "[%*d][%*d][%*d], %lf\n\n",&tx);

fscanf(infiletemp, "[%*d][%*d][%*d], %lf\n\n",&ty);

fscanf(infiletemp, "[%*d][%*d][%*d], %lf\n\n",&tz);

fclose(infiletemp);

printf("temperature data entered....\n");

infileup=fopen("height.txt","r");

fscanf(infileup, "[%*d][%*d][%*d], %lf\n\n",&ha);

fscanf(infileup, "[%*d][%*d][%*d], %lf\n\n",&hb);

fscanf(infileup, "[%*d][%*d][%*d], %lf\n\n",&hc);

fscanf(infileup, "[%*d][%*d][%*d], %lf\n\n",&hd);

fscanf(infileup, "[%*d][%*d][%*d], %lf\n\n",&he);

fscanf(infileup, "[%*d][%*d][%*d], %lf\n\n",&hf);

fscanf(infileup, "[%*d][%*d][%*d], %lf\n\n",&hg);
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fscanf(infileup, "[%*d][%*d][%*d], %lf\n\n",&hh);

fscanf(infileup, "[%*d][%*d][%*d], %lf\n\n",&hi);

fscanf(infileup, "[%*d][%*d][%*d], %lf\n\n",&hj);

fscanf(infileup, "[%*d][%*d][%*d], %lf\n\n",&hk);

fscanf(infileup, "[%*d][%*d][%*d], %lf\n\n",&hl);

fscanf(infileup, "[%*d][%*d][%*d], %lf\n\n",&hm);

fscanf(infileup, "[%*d][%*d][%*d], %lf\n\n",&hn);

fscanf(infileup, "[%*d][%*d][%*d], %lf\n\n",&ho);

fscanf(infileup, "[%*d][%*d][%*d], %lf\n\n",&hp);

fscanf(infileup, "[%*d][%*d][%*d], %lf\n\n",&hq);

fscanf(infileup, "[%*d][%*d][%*d], %lf\n\n",&hr);

fscanf(infileup, "[%*d][%*d][%*d], %lf\n\n",&hs);

fscanf(infileup, "[%*d][%*d][%*d], %lf\n\n",&ht);

fscanf(infileup, "[%*d][%*d][%*d], %lf\n\n",&hu);

fscanf(infileup, "[%*d][%*d][%*d], %lf\n\n",&hv);

fscanf(infileup, "[%*d][%*d][%*d], %lf\n\n",&hw);

fscanf(infileup, "[%*d][%*d][%*d], %lf\n\n",&hx);

fscanf(infileup, "[%*d][%*d][%*d], %lf\n\n",&hy);

fscanf(infileup, "[%*d][%*d][%*d], %lf",&hz);

fclose(infileup);

printf("Altitude vs pressaure data entered....\n");

infilenswind=fopen("vgdprs.txt","r");

fscanf(infilenswind, "[%*d][%*d][%*d], %lf\n\n",&vina);

fscanf(infilenswind, "[%*d][%*d][%*d], %lf\n\n",&vinb);

fscanf(infilenswind, "[%*d][%*d][%*d], %lf\n\n",&vinc);

fscanf(infilenswind, "[%*d][%*d][%*d], %lf\n\n",&vind);

fscanf(infilenswind, "[%*d][%*d][%*d], %lf\n\n",&vine);

fscanf(infilenswind, "[%*d][%*d][%*d], %lf\n\n",&vinf);

fscanf(infilenswind, "[%*d][%*d][%*d], %lf\n\n",&ving);

fscanf(infilenswind, "[%*d][%*d][%*d], %lf\n\n",&vinh);

fscanf(infilenswind, "[%*d][%*d][%*d], %lf\n\n",&vini);

fscanf(infilenswind, "[%*d][%*d][%*d], %lf\n\n",&vinj);

fscanf(infilenswind, "[%*d][%*d][%*d], %lf\n\n",&vink);

fscanf(infilenswind, "[%*d][%*d][%*d], %lf\n\n",&vinl);

fscanf(infilenswind, "[%*d][%*d][%*d], %lf\n\n",&vinm);

fscanf(infilenswind, "[%*d][%*d][%*d], %lf\n\n",&vinn);

fscanf(infilenswind, "[%*d][%*d][%*d], %lf\n\n",&vino);

fscanf(infilenswind, "[%*d][%*d][%*d], %lf\n\n",&vinp);

fscanf(infilenswind, "[%*d][%*d][%*d], %lf\n\n",&vinq);

fscanf(infilenswind, "[%*d][%*d][%*d], %lf\n\n",&vinr);

fscanf(infilenswind, "[%*d][%*d][%*d], %lf\n\n",&vins);

fscanf(infilenswind, "[%*d][%*d][%*d], %lf\n\n",&vint);

fscanf(infilenswind, "[%*d][%*d][%*d], %lf\n\n",&vinu);

fscanf(infilenswind, "[%*d][%*d][%*d], %lf\n\n",&vinv);

fscanf(infilenswind, "[%*d][%*d][%*d], %lf\n\n",&vinw);

fscanf(infilenswind, "[%*d][%*d][%*d], %lf\n\n",&vinx);

fscanf(infilenswind, "[%*d][%*d][%*d], %lf\n\n",&viny);

fscanf(infilenswind, "[%*d][%*d][%*d], %lf\n\n",&vinz);
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fclose(infilenswind);

printf("North-south wind data entered....\n");

infileewwind=fopen("ugdprs.txt","r");

fscanf(infileewwind, "[%*d][%*d][%*d], %lf\n\n",&evina);

fscanf(infileewwind, "[%*d][%*d][%*d], %lf\n\n",&evinb);

fscanf(infileewwind, "[%*d][%*d][%*d], %lf\n\n",&evinc);

fscanf(infileewwind, "[%*d][%*d][%*d], %lf\n\n",&evind);

fscanf(infileewwind, "[%*d][%*d][%*d], %lf\n\n",&evine);

fscanf(infileewwind, "[%*d][%*d][%*d], %lf\n\n",&evinf);

fscanf(infileewwind, "[%*d][%*d][%*d], %lf\n\n",&eving);

fscanf(infileewwind, "[%*d][%*d][%*d], %lf\n\n",&evinh);

fscanf(infileewwind, "[%*d][%*d][%*d], %lf\n\n",&evini);

fscanf(infileewwind, "[%*d][%*d][%*d], %lf\n\n",&evinj);

fscanf(infileewwind, "[%*d][%*d][%*d], %lf\n\n",&evink);

fscanf(infileewwind, "[%*d][%*d][%*d], %lf\n\n",&evinl);

fscanf(infileewwind, "[%*d][%*d][%*d], %lf\n\n",&evinm);

fscanf(infileewwind, "[%*d][%*d][%*d], %lf\n\n",&evinn);

fscanf(infileewwind, "[%*d][%*d][%*d], %lf\n\n",&evino);

fscanf(infileewwind, "[%*d][%*d][%*d], %lf\n\n",&evinp);

fscanf(infileewwind, "[%*d][%*d][%*d], %lf\n\n",&evinq);

fscanf(infileewwind, "[%*d][%*d][%*d], %lf\n\n",&evinr);

fscanf(infileewwind, "[%*d][%*d][%*d], %lf\n\n",&evins);

fscanf(infileewwind, "[%*d][%*d][%*d], %lf\n\n",&evint);

fscanf(infileewwind, "[%*d][%*d][%*d], %lf\n\n",&evinu);

fscanf(infileewwind, "[%*d][%*d][%*d], %lf\n\n",&evinv);

fscanf(infileewwind, "[%*d][%*d][%*d], %lf\n\n",&evinw);

fscanf(infileewwind, "[%*d][%*d][%*d], %lf\n\n",&evinx);

fscanf(infileewwind, "[%*d][%*d][%*d], %lf\n\n",&eviny);

fscanf(infileewwind, "[%*d][%*d][%*d], %lf\n\n",&evinz);

fclose(infileewwind);

printf("East-West wind data entered....\n");

system("pause");

//put in read file commands

groundtemp=ta;

groundvol=3.05;//3.33;

groundpressure=pa*100;

ma=28*1.67E-27;

//printf("Please enter the distance steps (resolution) you want to \n evaluate the simulation over. (stepsize <0.5 is advised):\n");

//scanf("%lf",&s);

s=0.1;

burst=0;

para_area=1;

//printf("Please enter the area of the parachute, used for the payload’s descent:\n");
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//scanf("%lf",&para_area);

//printf("please enter the volume (in cubic meters) at which the balloon explodes:\n");

//scanf("%lf",&burstvol);

burstvol=((4/3)*3.141592654*4.72*4.72*4.72);//((4/3)*3.141592654*4.2*4.2*4.2);

boxmass=1.6;

//printf("please enter the mass of the payload box:\n");

//scanf("%lf",&boxmass);

balloonmass=1.6;

printf("The programme only passes the data for one altutude value per\n certain number of altitude steps evaluated. Please state the\n number of steps yopu would like to miss out of the\n data per data recording (100 will suffice):\n");

scanf("%lf",&max);

//printf("please enter the mass of the uninflated balloon:\n");

//scanf("%lf",&balloonmass);

balloonmassburst=0.8;

//printf("please enter the co-efficient of drag for the payload’s ascent:\n");

//scanf("%lf",&cd1);

cd1=0.25;//0.47;

//printf("please enter the co-efficient of drag for the payload’s descent:\n");

//scanf("%lf",&cd1);

cd2=0.5;

//mass=1.0;

//printf("please enter the estimated mass of the balloon \n you expect to still be attached after the balloon pops:");

//scanf("%lf",&balloonmassburst);

groundvol=3.05;

ivelocity=0;

fvelocity=0;

initial_time=0;

i_vwe=0;

time_step=0;

velocitybn=0;

velocitybe=0;

tdistn=0;

tdiste=0; }

if (parameter_choice2==2){parameter_choice3=2;

parameter_choice2=2;

//turnover1=11000;

//turnover2=20000;

//turnover3=50000;

//temp1=223;

//temp2=223;

//temp3=268;

//groundtemp=283;

//groundpressure=101000;

//para_area=1;

// cout<< "temp1: "<<temp1<<" temp2: "<<temp2<<" temp3: "<<temp3<<" turnover 1, 2 and 3: "<<turnover1<<" "<<turnover2<<" "<<turnover3<<" "<<endl;
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printf("Firstly, we will look at the temperature behaviour of the earths atmosphere.\n");

printf("The temperature profile of the earth’s atmosphere can be approximated by 3 straight profile lines wit respect to altitude.\n");

printf("These lines start from the ground and work up to a maximum altitude which the payload ideally will not reach. \n");

printf("The programme needs to know the altitude (in meters) at which the profile lines end at\n");

printf("and what the temperature is at the end of each of these lines\n");

printf("Staring with the altitude at which the line profiles change, The heights for each turnover is required.\n");

printf("Please enter the height of the end of the first profile line (in meters), followed by the enter key\n");

scanf("%lf", &turnover1);

printf("Please enter the temperature at the hieght of the end of first profile line (in Kelvin), followed by the enter key\n");

scanf("%lf", &temp1);

printf("Please enter the height of the end of the second profile line (in meters), followed by the enter key\n");

scanf("%lf", &turnover2);

printf("Please enter the temperature at the hieght of the end of the second profile line (in Kelvin), followed by the enter key\n");

scanf("%lf", &temp2);

printf("Please enter the height of the end of the third profile line (in meters), followed by the enter key\n");

scanf("%lf", &turnover3);

printf("Please enter the temperature at the hieght of the end of the third profile line (in Kelvin), followed by the enter key\n");

scanf("%lf", &temp3);

printf("finally, Please enter the temperature at ground level\n");

scanf("%lf", &groundtemp);

printf("That is all the information required in terms of temperature.\n");

printf("The pressure at ground level (in pascals) is now required\n");

printf("Please enter this value, followed by the enter key.\n");

scanf("%lf",&groundpressure);

printf("Please enter the area of the parachute, used for the payload’s descent\n");

scanf("%lf",&para_area);

printf("please enter the volume (in cubic meters) at which the balloon explodes");

scanf("%lf",&burstvol);

printf("please enter the mass of the payload box");

scanf("%lf",&boxmass);

printf("please enter the mass of the uninflated balloon");

scanf("%lf",&balloonmass);

//printf("Please enter the distance steps (resolution) you want to \n evaluate thesimulation over. (stepsize <0.5 is advised):\n");

// scanf("%lf",&s);

printf("The programme only passes the data for one altutude value \n per certain number of altitude steps evaluated.\n Please state the number of steps yopu would like \n to miss out of the data per data recording (100 will suffice):\n");

scanf("%lf",&max);

//printf("please enter the co-efficient of drag for the payload’s ascent:\n");

//scanf("%lf",&cd1);

cd1=0.25;//0.47;

//printf("please enter the co-efficient of drag for the payload’s descent:\n");

//scanf("%lf",&cd1);

cd2=0.5;

//boxmass=1.6;

//balloonmass=1.6;

//mass=1.0;
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//printf("Please enter the average mass of the air molecules over\n the payload flight in kilograms \n(Usually this is around 28 atmoic units):\n");

//scanf("%lf",&ma)

ma=28*1.67E-27;

//printf("Please enter the distance steps (resolution) you want to \n evaluate thesimulation over. (stepsize <0.5 is advised):\n");

//scanf("%lf",&s);

s=0.1;

ivelocity=0;

fvelocity=0;

initial_time=0;

groundvol=3.05;//3.33;

i_vwe=0;

time_step=0;

velocitybn=0;

velocitybe=0;

tdistn=0;

tdiste=0;

burst=0;

//burstvol=((4/3)*3.141592654*4.2*4.2*4.2);//((4/3)*3.141592654*4.72*4.72*4.72);

//printf("please enter the estimated mass of the balloon \n you expect to still be attached after the balloon pops:");

//scanf("%lf",&balloonmassburst);

balloonmassburst=0.8;

printf("reading in data now....\n");

FILE *infilenswind;

FILE *infileewwind;

FILE *infileup;

infileup=fopen("height.txt","r");

fscanf(infileup, "[%*d][%*d][%*d], %lf\n\n",&ha);

fscanf(infileup, "[%*d][%*d][%*d], %lf\n\n",&hb);

fscanf(infileup, "[%*d][%*d][%*d], %lf\n\n",&hc);

fscanf(infileup, "[%*d][%*d][%*d], %lf\n\n",&hd);

fscanf(infileup, "[%*d][%*d][%*d], %lf\n\n",&he);

fscanf(infileup, "[%*d][%*d][%*d], %lf\n\n",&hf);

fscanf(infileup, "[%*d][%*d][%*d], %lf\n\n",&hg);

fscanf(infileup, "[%*d][%*d][%*d], %lf\n\n",&hh);

fscanf(infileup, "[%*d][%*d][%*d], %lf\n\n",&hi);

fscanf(infileup, "[%*d][%*d][%*d], %lf\n\n",&hj);

fscanf(infileup, "[%*d][%*d][%*d], %lf\n\n",&hk);

fscanf(infileup, "[%*d][%*d][%*d], %lf\n\n",&hl);

fscanf(infileup, "[%*d][%*d][%*d], %lf\n\n",&hm);

fscanf(infileup, "[%*d][%*d][%*d], %lf\n\n",&hn);

fscanf(infileup, "[%*d][%*d][%*d], %lf\n\n",&ho);

fscanf(infileup, "[%*d][%*d][%*d], %lf\n\n",&hp);

fscanf(infileup, "[%*d][%*d][%*d], %lf\n\n",&hq);

fscanf(infileup, "[%*d][%*d][%*d], %lf\n\n",&hr);

fscanf(infileup, "[%*d][%*d][%*d], %lf\n\n",&hs);

fscanf(infileup, "[%*d][%*d][%*d], %lf\n\n",&ht);

fscanf(infileup, "[%*d][%*d][%*d], %lf\n\n",&hu);
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fscanf(infileup, "[%*d][%*d][%*d], %lf\n\n",&hv);

fscanf(infileup, "[%*d][%*d][%*d], %lf\n\n",&hw);

fscanf(infileup, "[%*d][%*d][%*d], %lf\n\n",&hx);

fscanf(infileup, "[%*d][%*d][%*d], %lf\n\n",&hy);

fscanf(infileup, "[%*d][%*d][%*d], %lf",&hz);

fclose(infileup);

printf("Altitude vs pressaure data entered....\n");

infilenswind=fopen("vgdprs.txt","r");

fscanf(infilenswind, "[%*d][%*d][%*d], %lf\n\n",&vina);

fscanf(infilenswind, "[%*d][%*d][%*d], %lf\n\n",&vinb);

fscanf(infilenswind, "[%*d][%*d][%*d], %lf\n\n",&vinc);

fscanf(infilenswind, "[%*d][%*d][%*d], %lf\n\n",&vind);

fscanf(infilenswind, "[%*d][%*d][%*d], %lf\n\n",&vine);

fscanf(infilenswind, "[%*d][%*d][%*d], %lf\n\n",&vinf);

fscanf(infilenswind, "[%*d][%*d][%*d], %lf\n\n",&ving);

fscanf(infilenswind, "[%*d][%*d][%*d], %lf\n\n",&vinh);

fscanf(infilenswind, "[%*d][%*d][%*d], %lf\n\n",&vini);

fscanf(infilenswind, "[%*d][%*d][%*d], %lf\n\n",&vinj);

fscanf(infilenswind, "[%*d][%*d][%*d], %lf\n\n",&vink);

fscanf(infilenswind, "[%*d][%*d][%*d], %lf\n\n",&vinl);

fscanf(infilenswind, "[%*d][%*d][%*d], %lf\n\n",&vinm);

fscanf(infilenswind, "[%*d][%*d][%*d], %lf\n\n",&vinn);

fscanf(infilenswind, "[%*d][%*d][%*d], %lf\n\n",&vino);

fscanf(infilenswind, "[%*d][%*d][%*d], %lf\n\n",&vinp);

fscanf(infilenswind, "[%*d][%*d][%*d], %lf\n\n",&vinq);

fscanf(infilenswind, "[%*d][%*d][%*d], %lf\n\n",&vinr);

fscanf(infilenswind, "[%*d][%*d][%*d], %lf\n\n",&vins);

fscanf(infilenswind, "[%*d][%*d][%*d], %lf\n\n",&vint);

fscanf(infilenswind, "[%*d][%*d][%*d], %lf\n\n",&vinu);

fscanf(infilenswind, "[%*d][%*d][%*d], %lf\n\n",&vinv);

fscanf(infilenswind, "[%*d][%*d][%*d], %lf\n\n",&vinw);

fscanf(infilenswind, "[%*d][%*d][%*d], %lf\n\n",&vinx);

fscanf(infilenswind, "[%*d][%*d][%*d], %lf\n\n",&viny);

fscanf(infilenswind, "[%*d][%*d][%*d], %lf\n\n",&vinz);

fclose(infilenswind);

printf("North-south wind data entered.... %f,%f,\n", vina, vinz);

//cout<<"v wind in c out is "<<vina<<" and "<<vinz<<""<<endl;

infileewwind=fopen("ugdprs.txt","r");

fscanf(infileewwind, "[%*d][%*d][%*d], %lf\n\n",&evina);

fscanf(infileewwind, "[%*d][%*d][%*d], %lf\n\n",&evinb);

fscanf(infileewwind, "[%*d][%*d][%*d], %lf\n\n",&evinc);

fscanf(infileewwind, "[%*d][%*d][%*d], %lf\n\n",&evind);

fscanf(infileewwind, "[%*d][%*d][%*d], %lf\n\n",&evine);
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fscanf(infileewwind, "[%*d][%*d][%*d], %lf\n\n",&evinf);

fscanf(infileewwind, "[%*d][%*d][%*d], %lf\n\n",&eving);

fscanf(infileewwind, "[%*d][%*d][%*d], %lf\n\n",&evinh);

fscanf(infileewwind, "[%*d][%*d][%*d], %lf\n\n",&evini);

fscanf(infileewwind, "[%*d][%*d][%*d], %lf\n\n",&evinj);

fscanf(infileewwind, "[%*d][%*d][%*d], %lf\n\n",&evink);

fscanf(infileewwind, "[%*d][%*d][%*d], %lf\n\n",&evinl);

fscanf(infileewwind, "[%*d][%*d][%*d], %lf\n\n",&evinm);

fscanf(infileewwind, "[%*d][%*d][%*d], %lf\n\n",&evinn);

fscanf(infileewwind, "[%*d][%*d][%*d], %lf\n\n",&evino);

fscanf(infileewwind, "[%*d][%*d][%*d], %lf\n\n",&evinp);

fscanf(infileewwind, "[%*d][%*d][%*d], %lf\n\n",&evinq);

fscanf(infileewwind, "[%*d][%*d][%*d], %lf\n\n",&evinr);

fscanf(infileewwind, "[%*d][%*d][%*d], %lf\n\n",&evins);

fscanf(infileewwind, "[%*d][%*d][%*d], %lf\n\n",&evint);

fscanf(infileewwind, "[%*d][%*d][%*d], %lf\n\n",&evinu);

fscanf(infileewwind, "[%*d][%*d][%*d], %lf\n\n",&evinv);

fscanf(infileewwind, "[%*d][%*d][%*d], %lf\n\n",&evinw);

fscanf(infileewwind, "[%*d][%*d][%*d], %lf\n\n",&evinx);

fscanf(infileewwind, "[%*d][%*d][%*d], %lf\n\n",&eviny);

fscanf(infileewwind, "[%*d][%*d][%*d], %lf\n\n",&evinz);

fclose(infileewwind);

printf("East-west wind data entered.... %f, %f\n",evina,evinz);

// cout<< "temp1: "<<temp1<<" temp2: "<<temp2<<" temp3: "<<temp3<<" turnover 1, 2 and 3: "<<turnover1<<" "<<turnover2<<" "<<turnover3<<" "<<endl;

//mass=1.0;

}

}

}

#include<stdio.h>

#include<stdlib.h>

#include<iostream>

#include <cmath>

#include "altitudeprop.h"

//#include"falling.h"

using namespace std;
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double force::vwn()

{

double i_vwn=0;

if(height()==0){i_vwn=0;}

if (height()>0&&height()<ha){i_vwn=(height()/ha)*(vina);}

if (height()>=ha&&height()<hb){i_vwn=((height()-ha)/(hb-ha))*(vinb-vina)+vina;}//-3.04

if (height()>=hb&&height()<hc){i_vwn=((height()-hb)/(hc-hb))*(vinc-vinb)+vinb;}//(-1)*2.77;}

if (height()>=hc&&height()<hd){i_vwn=((height()-hc)/(hd-hc))*(vind-vinc)+vinc;}//(-1)*2.38999;}

if (height()>=hd&&height()<he){i_vwn=((height()-hd)/(he-hd))*(vine-vind)+vind;}//(-1)*2.52;}

if (height()>=he&&height()<hf){i_vwn=((height()-he)/(hf-he))*(vinf-vine)+vine;}//(-1)*4.2599998;}

if (height()>=hf&&height()<hg){i_vwn=((height()-hf)/(hg-hf))*(ving-vinf)+vinf;}//(-1)*5.62;}

if (height()>=hg&&height()<hh){i_vwn=((height()-hg)/(hh-hg))*(vinh-ving)+ving;}//(-1)*6.24;}

if (height()>=hh&&height()<hi){i_vwn=((height()-hh)/(hi-hh))*(vini-vinh)+vinh;}//(-1)*5.5699997;}

if (height()>=hi&&height()<hj){i_vwn=((height()-hi)/(hj-hi))*(vinj-vini)+vini;}//(-1)*5.2799997;}

if (height()>=hj&&height()<hk){i_vwn=((height()-hj)/(hk-hj))*(vink-vinj)+vinj;}//(-1)*4.9;}

if (height()>=hk&&height()<hl){i_vwn=((height()-hk)/(hl-hk))*(vinl-vink)+vink;}//(-1)*4.08;}

if (height()>=hl&&height()<hm){i_vwn=((height()-hl)/(hm-hl))*(vinm-vinl)+vinl;}//(-1)*3.42;}

if (height()>=hm&&height()<hn){i_vwn=((height()-hm)/(hn-hm))*(vinn-vinm)+vinm;}//(-1)*5.56;}

if (height()>=hn&&height()<ho){i_vwn=((height()-hn)/(ho-hn))*(vino-vinn)+vinn;}//(-1)*8;}

if (height()>=ho&&height()<hp){i_vwn=((height()-ho)/(hp-ho))*(vinp-vino)+vino;}//(-1)*8.6;}

if (height()>=hp&&height()<hq){i_vwn=((height()-hp)/(hq-hp))*(vinq-vinp)+vinp;}//(-1)*8.6;}

if (height()>=hq&&height()<hr){i_vwn=((height()-hq)/(hr-hq))*(vinr-vinq)+vinq;}//(-1)*9;}

if (height()>=hr&&height()<hs){i_vwn=((height()-hr)/(hs-hr))*(vins-vinr)+vinr;}//(-1)*9;}

if (height()>=hs&&height()<ht){i_vwn=((height()-hs)/(ht-hs))*(vint-vins)+vins;}//(-1)*3.25;}

if (height()>=ht&&height()<hu){i_vwn=((height()-ht)/(hu-ht))*(vinu-vint)+vint;}//(-1)*2.3899999;}

if (height()>=hu&&height()<hv){i_vwn=((height()-hu)/(hv-hu))*(vinv-vinu)+vinu;}//(-1)*3.31;}

if (height()>=hv&&height()<hw){i_vwn=((height()-hv)/(hw-hv))*(vinw-vinv)+vinv;}//(-1)*4.71;}

if (height()>=hw&&height()<hx){i_vwn=((height()-hw)/(hx-hw))*(vinx-vinw)+vinw;}//(-1)*9.5;}

if (height()>=hx&&height()<hy){i_vwn=((height()-hx)/(hy-hx))*(viny-vinx)+vinx;}//(-1)*5.8;}

if (height()>=hy&&height()<hz){i_vwn=((height()-hy)/(hz-hy))*(vinz-viny)+viny;}//(-1)*9;}

if (height()>hz){i_vwn=0;}

/*

if(height()==0){i_vwn=0;}

if (height()>0&&height()<ha){i_vwn=(vina);}

if (height()>=ha&&height()<hb){i_vwn=vinb;}//-3.04

if (height()>=hb&&height()<hc){i_vwn=vinc;}

if (height()>=hc&&height()<hd){i_vwn=vind;}

if (height()>=hd&&height()<he){i_vwn=vine;}

if (height()>=he&&height()<hf){i_vwn=vinf;}

if (height()>=hf&&height()<hg){i_vwn=ving;}

if (height()>=hg&&height()<hh){i_vwn=vinh;}

if (height()>=hh&&height()<hi){i_vwn=vini;}

if (height()>=hi&&height()<hj){i_vwn=vinj;}

if (height()>=hj&&height()<hk){i_vwn=vink;}

if (height()>=hk&&height()<hl){i_vwn=vinl;}

if (height()>=hl&&height()<hm){i_vwn=vinm;}

if (height()>=hm&&height()<hn){i_vwn=vinn;}

if (height()>=hn&&height()<ho){i_vwn=vino;}

if (height()>=ho&&height()<hp){i_vwn=vinp;}
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if (height()>=hp&&height()<hq){i_vwn=vinq;}

if (height()>=hq&&height()<hr){i_vwn=vinr;}

if (height()>=hr&&height()<hs){i_vwn=vins;}

if (height()>=hs&&height()<ht){i_vwn=vint;}

if (height()>=ht&&height()<hu){i_vwn=vinu;}

if (height()>=hu&&height()<hv){i_vwn=vinv;}

if (height()>=hv&&height()<hw){i_vwn=vinw;}

if (height()>=hw&&height()<hx){i_vwn=vinx;}

if (height()>=hx&&height()<hy){i_vwn=viny;}

if (height()>=hy&&height()<hz){i_vwn=vinz;}

if (height()>hz){i_vwn=0;}

*/

// if (height()>25000&&abs(i_vwn)>0){i_vwn=i_vwn+(0.001);}

//if (height()>25000&&abs(i_vwn)<=0.0000001){i_vwn=0;}

return i_vwn;

}

double force::vwe()

{

if(height()==0){i_vwe=0;}

if (height()>0&&height()<ha){i_vwe=(height()/ha)*(evina);}

if (height()>=ha&&height()<hb){i_vwe=((height()-ha)/(hb-ha))*(evinb-evina)+evina;}//-3.04

if (height()>=hb&&height()<hc){i_vwe=((height()-hb)/(hc-hb))*(evinc-evinb)+evinb;}//(-1)*2.77;}

if (height()>=hc&&height()<hd){i_vwe=((height()-hc)/(hd-hc))*(evind-evinc)+evinc;}//(-1)*2.38999;}

if (height()>=hd&&height()<he){i_vwe=((height()-hd)/(he-hd))*(evine-evind)+evind;}//(-1)*2.52;}

if (height()>=he&&height()<hf){i_vwe=((height()-he)/(hf-he))*(evinf-evine)+evine;}//(-1)*4.2599998;}

if (height()>=hf&&height()<hg){i_vwe=((height()-hf)/(hg-hf))*(eving-evinf)+evinf;}//(-1)*5.62;}

if (height()>=hg&&height()<hh){i_vwe=((height()-hg)/(hh-hg))*(evinh-eving)+eving;}//(-1)*6.24;}

if (height()>=hh&&height()<hi){i_vwe=((height()-hh)/(hi-hh))*(evini-evinh)+evinh;}//(-1)*5.5699997;}

if (height()>=hi&&height()<hj){i_vwe=((height()-hi)/(hj-hi))*(evinj-evini)+evini;}//(-1)*5.2799997;}

if (height()>=hj&&height()<hk){i_vwe=((height()-hj)/(hk-hj))*(evink-evinj)+evinj;}//(-1)*4.9;}

if (height()>=hk&&height()<hl){i_vwe=((height()-hk)/(hl-hk))*(evinl-evink)+evink;}//(-1)*4.08;}

if (height()>=hl&&height()<hm){i_vwe=((height()-hl)/(hm-hl))*(evinm-evinl)+evinl;}//(-1)*3.42;}

if (height()>=hm&&height()<hn){i_vwe=((height()-hm)/(hn-hm))*(evinn-evinm)+evinm;}//(-1)*5.56;}

if (height()>=hn&&height()<ho){i_vwe=((height()-hn)/(ho-hn))*(evino-evinn)+evinn;}//(-1)*8;}

if (height()>=ho&&height()<hp){i_vwe=((height()-ho)/(hp-ho))*(evinp-evino)+evino;}//(-1)*8.6;}

if (height()>=hp&&height()<hq){i_vwe=((height()-hp)/(hq-hp))*(evinq-evinp)+evinp;}//(-1)*8.6;}

if (height()>=hq&&height()<hr){i_vwe=((height()-hq)/(hr-hq))*(evinr-evinq)+evinq;}//(-1)*9;}

if (height()>=hr&&height()<hs){i_vwe=((height()-hr)/(hs-hr))*(evins-evinr)+evinr;}//(-1)*9;}

if (height()>=hs&&height()<ht){i_vwe=((height()-hs)/(ht-hs))*(evint-evins)+evins;}//(-1)*3.25;}

if (height()>=ht&&height()<hu){i_vwe=((height()-ht)/(hu-ht))*(evinu-evint)+evint;}//(-1)*2.3899999;}

if (height()>=hu&&height()<hv){i_vwe=((height()-hu)/(hv-hu))*(evinv-evinu)+evinu;}//(-1)*3.31;}
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if (height()>=hv&&height()<hw){i_vwe=((height()-hv)/(hw-hv))*(evinw-evinv)+evinv;}//(-1)*4.71;}

if (height()>=hw&&height()<hx){i_vwe=((height()-hw)/(hx-hw))*(evinx-evinw)+evinw;}//(-1)*9.5;}

if (height()>=hx&&height()<hy){i_vwe=((height()-hx)/(hy-hx))*(eviny-evinx)+evinx;}//(-1)*5.8;}

if (height()>=hy&&height()<hz){i_vwe=((height()-hy)/(hz-hy))*(evinz-eviny)+eviny;}//(-1)*9;}

if (height()>hz){i_vwe=0;}

/*

if(height()==0){i_vwe=0;}

if (height()>0&&height()<ha){i_vwe=(evina);}

if (height()>=ha&&height()<hb){i_vwe=evinb;}//-3.04

if (height()>=hb&&height()<hc){i_vwe=evinc;}

if (height()>=hc&&height()<hd){i_vwe=evind;}

if (height()>=hd&&height()<he){i_vwe=evine;}

if (height()>=he&&height()<hf){i_vwe=evinf;}

if (height()>=hf&&height()<hg){i_vwe=eving;}

if (height()>=hg&&height()<hh){i_vwe=evinh;}

if (height()>=hh&&height()<hi){i_vwe=evini;}

if (height()>=hi&&height()<hj){i_vwe=evinj;}

if (height()>=hj&&height()<hk){i_vwe=evink;}

if (height()>=hk&&height()<hl){i_vwe=evinl;}

if (height()>=hl&&height()<hm){i_vwe=evinm;}

if (height()>=hm&&height()<hn){i_vwe=evinn;}

if (height()>=hn&&height()<ho){i_vwe=evino;}

if (height()>=ho&&height()<hp){i_vwe=evinp;}

if (height()>=hp&&height()<hq){i_vwe=evinq;}

if (height()>=hq&&height()<hr){i_vwe=evinr;}

if (height()>=hr&&height()<hs){i_vwe=evins;}

if (height()>=hs&&height()<ht){i_vwe=evint;}

if (height()>=ht&&height()<hu){i_vwe=evinu;}

if (height()>=hu&&height()<hv){i_vwe=evinv;}

if (height()>=hv&&height()<hw){i_vwe=evinw;}

if (height()>=hw&&height()<hx){i_vwe=evinx;}

if (height()>=hx&&height()<hy){i_vwe=eviny;}

if (height()>=hy&&height()<hz){i_vwe=evinz;}

if (height()>hz){i_vwe=0;}

/*if(height()==0){i_vwn=0;}

if (height()<=10000&&height()>0){i_vwe=i_vwe-1.003;}

if (height()>10000&&height()<=25000){i_vwe=i_vwe-0.003;}

if (height()>25000&&abs(i_vwe)>0){i_vwe=i_vwe-(0.007);}

if (height()>25000&&abs(i_vwe)<=0.000001){i_vwe=0;}

//cout<<"the velocity of the east wind is"<<i_vwe<<""<<endl;*/

//i_vwe=-4;

return i_vwe;

}

double force::distancen()
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{double distn;

//v=u+at---> works which ever the direction. find v, then direction can be found

//distn=velocitybn*time_step;

double an= (vwn()-velocitybn);

double bn=(velocitybn-vwn());

double xi;

if (burst==0){xi=(pressure()*ma*(cd()+0.1)*Area())/(2*(1.38E-23)*temp());}

if (burst==1){xi=(pressure()*ma*cd()*0.01)/(2*(1.38E-23)*temp());}

double fdn=xi*an*an/mass();

if (vwn()>=0&&vwn()>=velocitybn){velocitybn=velocitybn+(fdn*time_step);}

if (vwn()>=0&&vwn()<velocitybn){velocitybn=velocitybn-(fdn*time_step);}

if (vwn()<0&&vwn()<=velocitybn){velocitybn=(velocitybn-(fdn*time_step));}

if (vwn()<0&&vwn()>velocitybn){velocitybn=(velocitybn)+(fdn*time_step);}

//distn=(velocitybn*time_step)+((0.5*xi*time_step*time_step*an*an)/mass());}

distn=velocitybn*time_step;

//distn=(velocitybn*time_step)-((0.5*xi*time_step*time_step*an*an)/mass());}

tdistn=tdistn+distn;

//cout<<"xi"<<xi<<" vwind"<<vwn()<<"v balloon"<<velocitybn<<"time step"<<time_step<<""<<endl;

return distn;}

double force::distancee()

{double diste;

double xi;

if (burst==0){xi=(pressure()*ma*cd()*Area())/(2*(1.38E-23)*temp());}

if (burst==1){xi=(pressure()*ma*cd()*0.01)/(2*(1.38E-23)*temp());}

//v=u+at---> works which ever the direction. find v, then direction can be found

//distn=velocitybn*time_step;

double ae= (vwe()-velocitybe);

double fde=xi*ae*ae/mass();
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if (vwe()>=0&&vwe()>=velocitybe){velocitybe=velocitybe+(fde*time_step);}

if (vwe()>=0&&vwe()<velocitybe){ velocitybe=velocitybe-(fde*time_step);}

if (vwe()<0&&vwe()<=velocitybe){ velocitybe=(velocitybe-(fde*time_step));}

if (vwe()<0&&vwe()>velocitybe){velocitybe=(velocitybe)+(fde*time_step);}

//distn=(velocitybn*time_step)+((0.5*xi*time_step*time_step*an*an)/mass());}

diste=velocitybe*time_step;

//distn=(velocitybn*time_step)-((0.5*xi*time_step*time_step*an*an)/mass());}

tdiste=tdiste+diste;

return diste;}

#include<stdio.h>

#include<stdlib.h>

#include<iostream>

#include <cmath>

#include"altitudeprop.h"

//#include"falling.h"

using namespace std;

double force::drag()

{

double woop=(pressure()*ma*cd()*Area())/(2*(1.38E-23)*temp());

double a=(ivelocity*ivelocity)+((2*(grav()+buoy())*s)/(mass()));

double b= (1/woop)-((2*s)/mass());

double fd=woop*ivelocity*ivelocity;

//double fd=a/b;

return -fd;

}

//else{freefall();}

double force::freefall(){

58



double woop=(pressure()*ma*cd()*para_area)/(2*(1.38E-23)*temp());

//double a=(ivelocity*ivelocity)-((2*(grav())*s)/mass());

//double b= (1/woop)-((2*s)/mass());

double fd=woop*ivelocity*ivelocity;

//double fd=a/b;

return fd;}

//if (ivelocity==0){ return 0;}

//cout<< "drag is "<<fd<<" " <<endl;

double force::buoy()

{

double fbload=2;//0.65*9.81;//(mass()-2.2)*9.81; // this fits results adjust later so that it is simple mass x grav

//double fb=((ma*nmoles()*8.31*groundtemp*9.81)/((1.38E-23)*temp()));

return fbload;

}

double force::grav()

{double fgb=((-1)*6.67e-27*5.997e24*mass())/((6400000+height())*(6400000+height()));

double fg= (-1)*mass()*9.81;// upgrade later

return fg;

}

//

double force::Ftotal()

{double Ft=999999;

if (burst==0){Ft=buoy()+drag();}

else {Ft=-grav()-freefall();}

return Ft;

}

#include<stdio.h>

#include<stdlib.h>

#include<iostream>

#include <cmath>

#include"altitudeprop.h"

//#include"falling.h"

using namespace std;
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double force::temp()

{ double tempout;

double t1=0;

double t2=0;

double t3=0;

//parameters();

if (parameter_choice2==1){

if(height()==0){tempout=groundtemp;}

if (height()>0&&height()<ha){tempout=(ta);}

if (height()>=ha&&height()<hb){tempout=((height()-ha)/(hb-ha))*(tb-ta)+ta;}//-3.04

if (height()>=hb&&height()<hc){tempout=((height()-hb)/(hc-hb))*(tc-tb)+tb;}//(-1)*2.77;}

if (height()>=hc&&height()<hd){tempout=((height()-hc)/(hd-hc))*(td-tc)+tc;}//(-1)*2.38999;}

if (height()>=hd&&height()<he){tempout=((height()-hd)/(he-hd))*(te-td)+td;}//(-1)*2.52;}

if (height()>=he&&height()<hf){tempout=((height()-he)/(hf-he))*(tf-te)+te;}//(-1)*4.2599998;}

if (height()>=hf&&height()<hg){tempout=((height()-hf)/(hg-hf))*(tg-tf)+tf;}//(-1)*5.62;}

if (height()>=hg&&height()<hh){tempout=((height()-hg)/(hh-hg))*(th-tg)+tg;}//(-1)*6.24;}

if (height()>=hh&&height()<hi){tempout=((height()-hh)/(hi-hh))*(ti-th)+th;}//(-1)*5.5699997;}

if (height()>=hi&&height()<hj){tempout=((height()-hi)/(hj-hi))*(tj-ti)+ti;}//(-1)*5.2799997;}

if (height()>=hj&&height()<hk){tempout=((height()-hj)/(hk-hj))*(tk-tj)+tj;}//(-1)*4.9;}

if (height()>=hk&&height()<hl){tempout=((height()-hk)/(hl-hk))*(tl-tk)+tk;}//(-1)*4.08;}

if (height()>=hl&&height()<hm){tempout=((height()-hl)/(hm-hl))*(tm-tl)+tl;}//(-1)*3.42;}

if (height()>=hm&&height()<hn){tempout=((height()-hm)/(hn-hm))*(tn-tm)+tm;}//(-1)*5.56;}

if (height()>=hn&&height()<ho){tempout=((height()-hn)/(ho-hn))*(to-tn)+tn;}//(-1)*8;}

if (height()>=ho&&height()<hp){tempout=((height()-ho)/(hp-ho))*(tp-to)+to;}//(-1)*8.6;}

if (height()>=hp&&height()<hq){tempout=((height()-hp)/(hq-hp))*(tq-tp)+tp;}//(-1)*8.6;}

if (height()>=hq&&height()<hr){tempout=((height()-hq)/(hr-hq))*(tr-tq)+tq;}//(-1)*9;}

if (height()>=hr&&height()<hs){tempout=((height()-hr)/(hs-hr))*(ts-tr)+tr;}//(-1)*9;}

if (height()>=hs&&height()<ht){tempout=((height()-hs)/(ht-hs))*(tt-ts)+ts;}//(-1)*3.25;}

if (height()>=ht&&height()<hu){tempout=((height()-ht)/(hu-ht))*(tu-tt)+tt;}//(-1)*2.3899999;}

if (height()>=hu&&height()<hv){tempout=((height()-hu)/(hv-hu))*(tv-tu)+tu;}//(-1)*3.31;}

if (height()>=hv&&height()<hw){tempout=((height()-hv)/(hw-hv))*(tw-tv)+tv;}//(-1)*4.71;}

if (height()>=hw&&height()<hx){tempout=((height()-hw)/(hx-hw))*(tx-tw)+tw;}//(-1)*9.5;}

if (height()>=hx&&height()<hy){tempout=((height()-hx)/(hy-hx))*(ty-tx)+tx;}//(-1)*5.8;}

if (height()>=hy&&height()<hz){tempout=((height()-hy)/(hz-hy))*(tz-ty)+ty;}//(-1)*9;}

if (height()>hz){tempout=tz;

//cout<<"the payload has breached the maximum hieght of the temperature profile..... fix this to get a true simulation"<<endl;

}

}

if(parameter_choice2==2){

if (alt<=turnover1)

{ tempout=0;

t1= (groundtemp)+ (height()*((temp1-groundtemp)/(turnover1)));

tempout=t1;

}

if (alt>turnover1 && alt<=turnover2)
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{tempout=0;

t2= temp1+(alt*((temp2-temp1)/(turnover2-turnover1)));

tempout=t2;}

if (alt>turnover2 && alt<=turnover3)

{tempout=0;

double m=((temp3-temp2)/(turnover3-turnover2));

t3= (temp2-(turnover2*m))+(alt*m);

//cout<< "x is "<<alt<<" y is "<<t3<<"m is "<<m<<""<<endl;

tempout=t3;}

if (height()<0 || height()>turnover3)

{cout<< "error... too high or below 0" <<endl;}

}

return tempout;

}

double force::nmoles()

{ double n= ((buoy())*1.38e-23)/(ma*8.31);

//double n=(groundpressure*groundvol)/(8.31*groundtemp);

return n;

}

double force::pressure()

{double p,tbase1, tbase2, tbase3, pbase1, pbase2, pbase3;

if (parameter_choice3==1){

if (height()<=11000){double a=(288.15)/(288.15+(-0.0065*height()));

double b=(9.81*0.028964)/(8.31*(-0.0065));

p=101325*pow(a,b);

}

if(height()>11000 && height()<=20000){p=22632*exp((-1)*((height()-11000)*0.028964*9.81)/(8.31*216.65));}

if (height()>20000&& height()<=32000){ double a=(216.65)/(216.65+(0.001*(height()-20000)));

double b=(9.81*0.028964)/(8.31*(0.001));

p=5474*pow(a,b);}

if (height()>32000&& height()<47000){ double a=(228.65)/(228.65+(0.0028*(height()-32000)));

double b=(9.81*0.028964)/(8.31*(0.0028));

p=868*pow(a,b);}

//else{//cout<<"payload either too high or conditions not met"<<endl;

//p=groundpressure*exp((-1)*(alt/(29.2467*groundtemp)));

//}

return p;}

if(parameter_choice3==2){ if(height()==0){p=pa;}

if (height()>0&&height()<ha){p=pa;}

if (height()>=ha&&height()<hb){p=((height()-ha)/(hb-ha))*(pb-pa)+pa;}//-3.04

if (height()>=hb&&height()<hc){p=((height()-hb)/(hc-hb))*(pc-pb)+pb;}//(-1)*2.77;}

if (height()>=hc&&height()<hd){p=((height()-hc)/(hd-hc))*(pd-pc)+pc;}//(-1)*2.38999;}
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if (height()>=hd&&height()<he){p=((height()-hd)/(he-hd))*(pe-pd)+pd;}//(-1)*2.52;}

if (height()>=he&&height()<hf){p=((height()-he)/(hf-he))*(pf-pe)+pe;}//(-1)*4.2599998;}

if (height()>=hf&&height()<hg){p=((height()-hf)/(hg-hf))*(pg-pf)+pf;}//(-1)*5.62;}

if (height()>=hg&&height()<hh){p=((height()-hg)/(hh-hg))*(ph-pg)+pg;}//(-1)*6.24;}

if (height()>=hh&&height()<hi){p=((height()-hh)/(hi-hh))*(pi-ph)+ph;}//(-1)*5.5699997;}

if (height()>=hi&&height()<hj){p=((height()-hi)/(hj-hi))*(pj-pi)+pi;}//(-1)*5.2799997;}

if (height()>=hj&&height()<hk){p=((height()-hj)/(hk-hj))*(pk-pj)+pj;}//(-1)*4.9;}

if (height()>=hk&&height()<hl){p=((height()-hk)/(hl-hk))*(pl-pk)+pk;}//(-1)*4.08;}

if (height()>=hl&&height()<hm){p=((height()-hl)/(hm-hl))*(pm-pl)+pl;}//(-1)*3.42;}

if (height()>=hm&&height()<hn){p=((height()-hm)/(hn-hm))*(pn-pm)+pm;}//(-1)*5.56;}

if (height()>=hn&&height()<ho){p=((height()-hn)/(ho-hn))*(po-pn)+pn;}//(-1)*8;}

if (height()>=ho&&height()<hp){p=((height()-ho)/(hp-ho))*(pp-po)+po;}//(-1)*8.6;}

if (height()>=hp&&height()<hq){p=((height()-hp)/(hq-hp))*(pq-pp)+pp;}//(-1)*8.6;}

if (height()>=hq&&height()<hr){p=((height()-hq)/(hr-hq))*(pr-pq)+pq;}//(-1)*9;}

if (height()>=hr&&height()<hs){p=((height()-hr)/(hs-hr))*(ps-pr)+pr;}//(-1)*9;}

if (height()>=hs&&height()<ht){p=((height()-hs)/(ht-hs))*(pt-ps)+ps;}//(-1)*3.25;}

if (height()>=ht&&height()<hu){p=((height()-ht)/(hu-ht))*(pu-pt)+pt;}//(-1)*2.3899999;}

if (height()>=hu&&height()<hv){p=((height()-hu)/(hv-hu))*(pv-pu)+pu;}//(-1)*3.31;}

if (height()>=hv&&height()<hw){p=((height()-hv)/(hw-hv))*(pw-pv)+pv;}//(-1)*4.71;}

if (height()>=hw&&height()<hx){p=((height()-hw)/(hx-hw))*(px-pw)+pw;}//(-1)*9.5;}

if (height()>=hx&&height()<hy){p=((height()-hx)/(hy-hx))*(py-px)+px;}//(-1)*5.8;}

if (height()>=hy&&height()<hz){p=((height()-hy)/(hz-hy))*(pz-py)+py;}//(-1)*9;}

if (height()>hz&&height()<50000){p=((height()-hz)/(50000-hz)*(1-pz)+pz);}

if (height()>50000){cout<<"payload is too high to simulate any further"<<endl;

p=0;}

//pz-(((0.75*height())-hz)*pz);

return p*100; }

}

double force::volume()

{double vhel=0;

if (burst==0){vhel= (nmoles()*8.31*temp())/pressure();}// replaced temp with ground themp here for testing!!!

if (vhel>=burstvol){burst=1;

vhel=0;}

if (burst==1){vhel=0;}

return vhel;

}

double force::Area()

{

double radius= pow(((volume()*3)/(3.141592654*4)),(1/3));

double ab= 3.141592654* pow(radius,2);

return ab;

}
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void force::fvelocityassign()

{

if (abs(Ftotal())>=0.00001){ fvelocity= sqrt((ivelocity*ivelocity)+(2*((Ftotal()/mass()))*s));}

//if (abs(Ftotal())>=0.000000001){ fvelocity= sqrt((ivelocity*ivelocity)-(2*(abs(Ftotal()/mass))*s));}

else {fvelocity=ivelocity;}

}

void force::velocity_update()

{ivelocity=fvelocity;}

double force::time()

{double u=(ivelocity);

double v=(fvelocity);

time_step=(((mass())*(v-u))/Ftotal());

initial_time=initial_time+time_step;

//cout<< "v is: "<<v<<" and u is: "<<u<<" k:"<<k<<" time: "<<timex<<" "<<endl;

//cout<<"time step"<<time_step<<""<<endl;

return initial_time;

}

double force::increment()

{alt=alt+s;

return alt;

}

double force::decrease()

{

alt=alt-s;

return alt;

}

double force::mass()

{ double tmass;

if (burst==0)

{tmass=boxmass+(nmoles()*4*1.67E-27*6.023E23)+balloonmass;

return tmass;}

if (burst==1){tmass=1.6+balloonmassburst;

return tmass;}

else {cout<<"somethings gone wrong 1"<<endl;

return -100000;}

}
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double force::height()const

{return alt;}

double force::cd(){if (burst==1){return cd2;}

else{ return cd1;}

}
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