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1 Introduction

The purpose of this document is to detail the math-
ematics of the statistics of the avalanche readouts
of L3 CCDs with the purpose of investigating how
they can be simulated. Only a little of the stuff here
is original, but some of the background is not laid
out in an easily accessible form in the papers I have
read, so I thought it would help to have everything
in one place. It is rather mathematical and if you
prefer not to plough through all the (many) equa-
tions, then you may just want to look at the figures
and take a look at section 6 which summarises the
main points.

2 The Model

In the avalanche gain section of the L3 CCD, high
clock voltage causes there to be a significant proba-
bility that an electron will produce another electron
when moving from stage to stage. In common with
others, I will call this probability p. In practice it
is fairly small, of order 0.015. However there are
many such multiplication stages and so the overall
gain can be large.

A schematic of the process is shown in Fig. 1.
The key thing to note is that at any stage if there
are, say, n electrons, then each of them indepen-
dently goes through the same multiplication pro-
cess for the next stage. i.e. it is not the case that
if there are 100 electrons that there is a p chance
at the next stage that there will be 200 (instead it
will be p100).

3 Statistics

Key properties of interest are the mean gain as a
result of a given number r stages of this process, the

Figure 1: Schematic of the multiplication process,
starting from 1 electron on the left at stage 0. At stage
1, a second electron is created with probability p. Each
of the two possible electrons at stage 2 then indepen-
dently can go through the same multiplication, so that
as many as four electrons may be present by stage 2.

variance of the gain which is important because it
is a measure of the noise added by the avalanche
process, and, in most detail of all, the probabil-
ity distribution of the gain. This was worked out
by Matsuo et al (1985) although they do refer to
difficult-to-access texts for several results; I will re-
peat their analysis here which is based upon a gen-
eral theory of “branching processes” which goes un-
der the name Galston-Watson branching process,
which was first considered in the context of extinc-
tions of populations in the 19th century. I do this
fairly fully so that this document is self-contained.

3.1 Fundamentals

First I will assume that we start from one elec-
tron at stage 0. I am interested in the distribution
at stage r, which I will associate with a random
variable called Nr. The probabilities we want are
P (Nr = n). For instance these give us the mean
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gain after r stages gr from

gr = E(Nr) =
∞∑

n=0

P (Nr = n)n, (1)

where I use the standard notation E(X) to mean
the “expected value” of a random variable X. How-
ever, it turns out that it is not possible to obtain
a simple expression for the probabilities except in
special cases, and we have to adopt a more sophisti-
cated approach. To do so we will consider two func-
tions known as the “moment generating function”
µ (MGF) and the “probability generating function”
π (PGF) which for a random variable N are defined
by

µN (t) = E(etN ) =
∞∑

n=0

P (N = n)etn, (2)

and

πN (t) = E(tN ) =
∞∑

n=0

P (N = n)tn, (3)

These two functions are closely related to each
other as it is easily seen that

πN (t) = µN (ln t). (4)

If one takes the derivative of the MGF then

dµN (t)
dt

= E(NetN ), (5)

and therefore

dµN (t)
dt

∣∣∣∣
t=0

= E(N), (6)

which is the first moment (mean) of N that we
want. It is then obvious that

E(Np) =
dpµ(t)

dtp

∣∣∣∣
t=0

, (7)

and hence the term “moment generating function”.
The idea is that sometimes the moment generating
function is easier to handle than the probability
distribution and so it is possible to obtain moments
when once cannot obtain (easily) the probabilities
themselves. Similarly, from the definition of the
PGF one can show that

PN (n) =
1
n!

dnπN (t)
dtn

∣∣∣∣
t=0

, (8)

and hence this is the “probability generating func-
tion”.

The MGF and PGF are standard functions in
statistics. A final result which we use below is that
if one has two independent random variables, N
and M then

πN+M (t) = E(tN+M ), (9)
= E(tN )E(tM ), (10)
= πN (t)πM (t). (11)

The first to the second line uses the property that
for two independent random variables X and Y ,
E(XY ) = E(X)E(Y ). An identical result applies
to MGFs.

3.2 The PGF and MGF for
avalanche multipliers

Consider the PGF at stage r + 1 of the avalanche
multiplier

πr+1(t) = E(tNr+1) (12)

=
∑

k

E(tNr+1 |Nr = k)P (Nr = k),(13)

where we have written µNr+1 = µr+1 etc for short.
The last line introduces an expectation conditional
on a particular value of Nr = k for the previous
stage. This is relatively easy to calculate because
if one knows that there were k electrons at stage r,
then the distribution for stage r + 1 is simply the
combined result of k single electron multiplications,
(N1)1 + (N1)2 + (N1)3 + . . . + (N1)k where each
element is distributed as N1, the distribution after
1 stage with a 1 − p chance of 1 electron and a p
chance of 2 electrons. This has corresponding PGF
(dropping the subscript 1 because we will use this
special case a fair bit)

π(t) = (1− p)t + pt2, (14)

and thus the PGF for the combination of k such
variables is, by Eq. 11, = πk(t), and therefore from
Eq. 13 we have

πr+1(t) =
∑

k

P (Nr = k)πk(t), (15)

= πr(π(t)). (16)
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We can immediately write from this that

π2(t) = π(π(t)), (17)
π3(t) = π(π(π(t))), (18)
π4(t) = π(π(π(π(t)))), (19)

etc, and also therefore that

πr+1(t) = π(πr(t)) (20)
= (1− p)πr(t) + pπ2

r(t), (21)

the last line following from Eq. 14. A similar rela-
tion applies to the MGF:

µr+1(t) = (1− p)µr(t) + pµ2
r(t). (22)

Eqs 21 and 22 are recurrence relations that can be
applied to deduce the PGF and MGF at stage r
given that π0(t) = t and µ0(t) = et. They corre-
spond to equation 4 from Matsuo et al (1985).

3.3 The mean and variance

We are now in a position to deduce the mean gain,
because if we take the derivative of Eq. 22 and set
t = 0 then by Eq. 6 and using the fact that µ(t =
0) = 1 for any MGF, we have

gr+1 = (1 + p)gr. (23)

Given that g0 = 1 then we have

gr = (1 + p)r, (24)

which is what one would have hoped. To derive the
variance we want the second moment, and therefore
the second derivative of Eq. 22 which after setting
t = 0 leads to

E(N2
r+1) = (1 + p)E(N2

r ) + 2pg2
r . (25)

Using σ2 = E(X2)− E(X)2, leads to

σ2
r+1 = (1 + p)σ2

r + p(1− p)(1 + p)2r, (26)

where we have substituted the relation for gr.
Starting from σ0 = 0, one can show that this re-
currence relation is satisfied by

σ2
r =

1− p

1 + p

(
g2

r − gr

)
. (27)

As r → ∞ and therefore gr → ∞, σr/gr →√
(1− p)/(1 + p) ∼ 1 for small p. This is the root

cause of the extra noise added by the avalanche gain
section: the gain can be large but it is also uncer-
tain by a similar order of magnitude. As p → 1,
σr → 0, reflecting the fact that if multiplication
is certain, then the gain just becomes 2r with no
spread. Unfortunately, this is not a realistic case
in practice. The uncertainty in the gain in practice
is why L3 CCDs operated in a strict proportional
mode effectively have half the QE of a standard
CCD.

3.4 The probability distribution

According to Eq. 8, to get the probability distribu-
tion we must take the n-th derivative of Eq. 21 and
divide by n!. This leads to the recurrence relation

Pr+1(n) = (1− p)Pr(n) + p
n∑

k=0

Pr(k)Pr(n− k),

(28)
where Pr(n) is a short-hand form of P (Nr = k).
This can be computed given that Pr(0) = 0 and
P0(1) = 1, however, it does not lead to analyt-
ically tractable expressions, and one must resort
to computation. Computing it directly can take
a long time. For example, on my desktop, taking
p = 0.015 and r = 591, then g = 6629. It turns
out that the probability is approximately exp−x/g,
and so in an exact computation one would be inter-
ested in numbers up to a few times g. For instance,
computing up to gains of 30,000 would not be un-
reasonable in this case. On my workstation this
takes 600 seconds, and since it is dominated by the
sum in the above equation, it scales as the maxi-
mum number squared. Luckily, since the sum is a
convolution, FFTs can help out, and the same com-
putation with FFTs only takes 22 seconds which is
an acceptable overhead for the start of a data simu-
lation for instance. FFTs do have one disadvantage
in this case which is that round-off errors limit how
low one can go in probability, but computing in
double precision gives a reliable dynamic range of
∼ 14 orders of magnitude which should be fine.

3.5 Clock-Induced Charges

During clocking it is possible for electrons to be
generated without the aid of incident photons. Nor-
mally these are buried in readout noise but in an
L3CCD they will be amplified and therefore be
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significant. Any generated in the parallel shifts
will undergo precisely the same amplification as
photon-generated events, and will be indistinguish-
able from them. Those generated in the avalanche
register however will have a different distribution
because if say a CIC appears in the last 10 section
of the register, they will not be amplified much, and
so we expect a skew towards much lower numbers
of electrons. There seems to be some uncertainty
over which will dominate but I have been told that
it is the in register events that are most impor-
tant because of the high voltages (Basden, prov.
comm.). Therefore from now on I will only discuss
these latter events.

The probability distribution of pure CICs can be
considered in the case of no input electron. Then
at each step of the avalanche register let there we a
small probability pCIC of an electron being gener-
ated. If this happens on step k of the total r, then
it will be amplified over the next r − k steps lead-
ing to a contribution with distribution Pr−k. The
overall contribution from step k will in fact be

P ′
k(n) = (1− pCIC)δ0n + pCICPr−k(n) (29)

and the final total distribution will be the convolu-
tion of all such distributions for k = 1 to r. Con-
volution once again suggests FFTs, and the calcu-
lation of the final distribution can in fact be nicely
tacked on to the FFT computation of Pr at little
extra computational cost. One of the nice features
of these computations is that there is no “downscat-
ter” in that the probability of a number of counts
n at any stage depends only upon earlier probabil-
ities for 0 up to n and not on any higher values.
This allows an exact computation up to some pre-
set limit.

Fig. 2 shows the results of computations of CIC
distributions for several different assumed values
for pCIC . The point about no “downscatter” is
visible in the lack of “edge” effects on the right-
hand side of this figure which is exactly set at the
highest value considered.

In photon counting mode, one sets a threshold
above which a pixels is counted as having a photon.
To avoid loss of sensitivity this must be set as low as
possible, but not so low that many spurious events
are generated by readout noise. For example, in the
case shown if Fig. 2 a level of 100 would result in
only a small loss of counts (about 2%) while being

Figure 2: The logarithm of the probability of obtaining
a CIC > x is plotted as a function of x for several
different CIC probabilities, marked on the right, but
with other parameters held fixed as indicated at the
top of the plot. this shows for instance that for pCIC =
0.0008, slightly fewer than 1 in 10 pixels will suffer a
CIC with more than 1000 counts.

much greater than a readout noise of, say, 10 elec-
trons RMS. However, the figure shows that it may
instead be CICs that really set the threshold, de-
pending upon pCIC . For instance if pCIC = 0.0032,
then a threshold of 100 would see ∼ 60% of pixels
with spurious “photons” due to CIC. Since in pho-
ton counting mode one wants to keep the object
signal well below a mean rate of 1 photon/pixel,
this would be a disaster. Raising the threshold to
1000 would reduce the rate to ∼ 30% but also lose
1 in 6 or so of the real counts.

For the case shown, a value for pCIC in excess of
10−4 or so will be bad news. As I understand it, the
probability of CICs is a function of the voltages in
the sense that increasing voltages imply increasing
pCIC as well as increasing gain. It may be that the
increase in gain outstrips pCIC , on the other hand
we may find that there is some optimum gain with
respect to CICs and readout noise.

At present there seems much uncertainty over
a reasonable value for pCIC and whether CICs in
the serial register (as modelled here) dominate over
parallel CICs. It may depend upon the nature of the
clock waveforms. It will be important to be able to
characterise CICs well in real devices. For instance
by clocking out the serial register without any paral-
lel clocks (if possible). My hope is that like readout
noise in the old days of CCDs, CICs are a problem
that will get better with time.
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3.5.1 The mean output from CICs

Since the output probability distribution of CICs
is the convolution of the P ′

k distributions discussed
above, then the MGF of the ouput is given by

µCIC = Πr−1
k=0 (1− pCIC + pCICµk) . (30)

Taking the derivative in order to compute the mean
gives

dµCIC

dt
=

r−1∑
k=0

pCIC
dµk

dt
Πl 6=k (1− pCIC + pCICµk) .

(31)
Setting t = 0, and remembering that µ(0) = 1 gives
the mean CIC-only output to be

gCIC =
r−1∑
k=0

pCICgk (32)

= pCIC

r−1∑
k=0

(1 + p)k (33)

=
pCIC

p
(g − 1), (34)

where g = (1 + p)r as before. This nicely shows
that it is important that pCIC � p.

4 Simulating L3 CCDs

We need the probability distributions discussed
above to simulate the action of L3 CCDs. This
can be done by computing the exact probabilities
as outlined in the previous section and then search-
ing a look-up table. Basden et al (2003) found that
for small p and large r that the distribution for a
single electron input ignoring CICs was fairly well
matched by an exponential distribution of the form

P (x) =
1
g
e−x/g. (35)

I find that the following function

P (n) =
1

g − 1

(
g − 1

g

)n

, (36)

which has a mean of g and a variance of g2−g does
a rather better job, especially at small g. The fact
that this is not quite the exact variance of Eq. 27

is because this probability distribution is only ap-
proximate. In reality it tends to be too large for
n � g and n � g and too small for n ∼ g. Still,
the approximation is still pretty close to the mark
as far as I can determine and makes a quick way to
generate the distribution to compute

N = int
(

1− lnX

ln g/(g − 1)

)
, (37)

where X is a uniform random number between 0
and 1.

All the above holds for a single input electron.
If m electrons are input then each will be inde-
pendently amplified and so the resulting probabil-
ity distribution will be the convolution of m of
the above probability distributions. Basden et al
(2003) give the following approximation for their
exponential distribution:

Qn(m) =
mn−1 exp(−m/g)

gn(n− 1)!
, (38)

which gives the probability of an output of m elec-
trons given an input of n. I use the letter Q because
this probility represents the chance of an output of
m given an input of n, as opposed to the previous
usage of the chance of an output of n at stage r.
This equation would be an approximation, even if
their single electron probability was correct, but it
is a pretty good one in many cases as I will show
in the next section.

For my improved single electron distribution,
Eq. 36, I find the following exact expression for a
convolution of n such distributions:

Qn(m) =
(m− 1)!
(m− n)!

1
(g − 1)n(n− 1)!

(
g − 1

g

)m

,

(39)
which applies so long as m ≥ n and n > 0. For
instance setting n = 1 immediately returns the sin-
gle electron input case. This is still approximate
since the single electron input is approximate, and
at high gains at least it is indistinguishable from
Basden et al’s (2003) approximation, i.e. it fits the
real distribution as well (or as poorly) as Basden et
al. It may be possible to find a similar analytic ap-
proximation for CICs, although they are certainly
not simple exponentials.

One could repeatedly instead sample the 1 elec-
tron distribution and add the results; whether this
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Figure 6: The probability distribution for 2 input elec-
trons in a low gain case. This brings out the advantage
of the revised approximation Eq. 39 (red dot-dash line)
compared to Eq. 38 (green dashed line).

is feasible is probably a matter of computational
time. The CICs can always be added in from a
single lookup.

I do not yet know the practicality in terms of
time of implementing look-up tables once they have
been calculated. I expect them to be slow, but not
unreasonably so. For example, one could look-up
from a table of 65000 values in about 16 “binary
chops”, which does not seem too bad.

5 Example Distributions

In this section I just present some example distri-
butions in Figs. 3 to 6. Key points are

1. In-register CIC events have very extended tails
(Fig. 3)

2. Basden et al’s (2003) approximation for mul-
tiple input electrons is better than a gaussian
of the correct mean and variance up to quite
high input numbers. (Fig. 5)

6 Executive summary

These are the main points to take from this work:

1. The statistics of the gain produced by L3
CCDs are somewhat complicated, but they can
be calculated in a reasonable amount of time,
so I hope that accurate data simulations will
be possible.

2. At high gain the distribution given a single
electron at the start of the avalanche regsis-
ter is close to exponential as in Eq. 35 and as
shown in the top-left of Fig. 4.

3. An approximation which works somewhat bet-
ter at lower gains is given in Eq. 36.

4. Eqs 35 and 36 have multi-electron equivalents:
Eqs 38 and 39. The equations don’t do well
when the multiplication probability is large.
Examples are shown in Figs 4 to 6.

5. Clock-induced charges (CICs) are potentially
serious, but be very careful with any figures
you see quoted for them because there is a
lot of folklore/hogwash floating around about
them.

6. CICs generated on the chip are indistinguish-
able from normally generated events, but
might show up as a gradient in the parallel
direction, with higher numbers of events the
further a given pixels has had to travel.

7. CICs generated in the serial register can have
an extremely skewed distribution with many
very small events, but also a long tail extend-
ing to large counts (Fig. 3).

8. In photon counting mode at least CICs sim-
ply add extra background, the crucial but un-
known quantity being just how much do they
add.

9. Characterisation of CICs is important. It
would be nice to be able to clock out the serial
register without parallel shifts for instance be-
cause then one can determine the importance
of events generated in the serial register alone.

I have written various programs to compute the
distributions discussed here and can easily generate
many such plots.
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Figure 3: The probability distribution for 0 input electrons, i.e. pure CIC events. I show a zoomed in one on
the left to show the significant chance in this case of no CIC events at all, and a larger scale one on the right to
show the very extended tail of the CIC events, which is this case have a mean value of 442 despite having a 55%
chance of being zero.

Figure 4: The probability distributions for 1, 2, 3 and 4 input electrons with no CICs. The green dashed line
shows Basden et al (2003)’s approximation, the red dash-dotted line shows my approximation, while the blue
dotted line shows a gaussian of the same mean and variance (which the distribution should tend towards by the
central limit theorem). Note that the scales change on each plot.
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Figure 5: The probability distribution for 40 input electrons with no CICs. The various lines are as in Fig. 4.
The distribution remains significantly skewed and so the approximate expressions remain better than a gaussian
even for this relatively large number of input electrons. However the right-panel shows that gaussians can be
better especially when p is large.
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